Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
278 result(s) for "Clusiaceae"
Sort by:
Taxonomic treatment on Garciniasopsopia (Section Brindonia, Clusiaceae) in Thailand, with a new synonym and three lectotypifications of its synonyms
belongs to the section Brindonia in the family Clusiaceae. The fruits, young shoots and leaves are edible and have a sour taste. Morphological description and illustrations are provided, along with notes on distribution, habitats and ecology, phenology, a preliminary conservation assessment, etymology, vernacular names, uses and specimens examined. is a newly-synonymised name under . Three synonyms of are here lectotypified, including , and .
Allanblackia Oil: Phytochemistry and Use as a Functional Food
The consumption and commercial exploitation of Allanblackia (Clusiaceae) seed oils is of current interest. The favorable physicochemical characteristics of Allanblackia oil (solid at room temperature; high stearic acid content) lend food products that contain it (i.e., vegetable-based dairy products, ice cream, spreads) health advantages over others that contain higher levels of lauric, myristic, and/or palmitic acids, which can increase blood cholesterol levels. Such considerations are important for individuals prone to cardiovascular disease or with hypercholesterolemia. Domestication projects of several Allanblackia species in tropical Africa are underway, but wildcrafting of fruits to meet the seed demand still occurs. Proper species authentication is important, since only authenticated oil can be deemed safe for human consumption. The chemical constituency of Allanblackia seed oils, and potential roles of these phytochemicals in preventive strategies (e.g., as part of a healthy diet) and as pharmacological agents used to treat chronic disease were examined in this review. The primary and secondary metabolite constituency of the seed oils of nearly all Allanblackia species is still poorly known. The presence, identity, and quantity of potentially bioactive secondary metabolites in the seed oils, and pharmacological testing of isolated compounds were identified as important directions for future research.
Plastome Structural Conservation and Evolution in the Clusioid Clade of Malpighiales
The clusioid clade of Malpighiales is comprised of five families: Bonnetiaceae, Calophyllaceae, Clusiaceae, Hypericaceae and Podostemaceae. Recent studies have found the plastome structure of Garcinia mangostana L. from Clusiaceae was conserved, while plastomes of five riverweed species from Podostemaceae showed significant structural variations. The diversification pattern of plastome structure of the clusioid clade worth a thorough investigation. Here we determined five complete plastomes representing four families of the clusioid clade. Our results found that the plastomes of the early diverged three families (Clusiaceae, Bonnetiaceae and Calophyllaceae) in the clusioid clade are relatively conserved, while the plastomes of the other two families show significant variations. The Inverted Repeat (IR) regions of Tristicha trifaria and Marathrum foeniculaceum (Podostemaceae) are greatly reduced following the loss of the ycf1 and ycf2 genes. An inversion over 50 kb spanning from trnK-UUU to rbcL in the LSC region is shared by Cratoxylum cochinchinense (Hypericaceae), T. trifaria and Ma. foeniculaceum (Podostemaceae). The large inversed colinear block in Hypericaceae and Podostemaceae contains all the genes in the 50-kb inversed colinear block in a clade of Papilionoideae, with two extra genes ( trnK-UUU and matK ) at one end. Another endpoint of both inversions in the two clusioids families and Papilionoideae is located between rbcL and accD . This study greatly helped to clarify the plastome evolution in the clusioid clade.
De novo assembled nuclear, chloroplast, and mitochondrial genomes show high intraspecific variation in the tropical rainforest species Symphonia globulifera
Symphonia globulifera (Clusiaceae) has emerged as a model organism in tropical forest ecology and evolution due to its significant ecological role and complex biogeographical history. Originating from Africa, this species has independently colonized Caribbean, Central, and South America three times, becoming a key component of tropical ecosystems across these regions. Despite the ecological importance of S. globulifera and other tropical tree species, our understanding of their genomic architecture remains limited compared to temperate species. To bridge this gap, we present a comparative analysis of two de novo assembled nuclear genomes of S. globulifera—one from a South American individual and one from an African individual—and report newly assembled chloroplast and mitochondrial genomes. Initial assembly of the organelles was performed using GetOrganelle, and the results were compared with corresponding publicly available sequences from closely related Garcinia species. Our study introduces novel genomic resources, including an annotated nuclear draft genome based on Illumina short reads, the first chloroplast genome assembly for the genus, and a set of assembled mitochondrial gene sequences. Additionally, we provide a set of single-copy nuclear gene alignments identified by BUSCO as well as manually curated coding plastid genes, which will serve as valuable tools for future comparative analyses and phylogenetic studies. Our preliminary results based on chloroplast genes and limited sampling suggest that Garcinia might be nonmonophyletic. The detected differences in nuclear and organellar genomes reveal high intraspecific variation, emphasizing the importance of genome-wide sampling for understanding tropical tree evolution.
Calophyllaceae plastomes, their structure and insights in relationships within the clusioids
A complete chloroplast genome is not yet available for numerous species of plants. Among the groups that lack plastome information is the clusioid clade (Malpighiales), which includes five families: Bonnetiaceae, Calophyllaceae, Clusiaceae, Hypericaceae, and Podostemaceae. With around 2200 species, it has few published plastomes and most of them are from Podostemaceae. Here we assembled and compared six plastomes from members of the clusioids: five from Calophyllaceae (newly sequenced) and one from Clusiaceae. Putative regions for evolutionary studies were identified and the newly assembled chloroplasts were analyzed with other available chloroplasts for the group, focusing on Calophyllaceae. Our results mostly agree with recent studies which found a general conserved structure, except for the two Podostemaceae species that have a large inversion ( trn K-UUU– rbc L) and lack one intron from ycf 3. Within Calophyllaceae we observed a longer LSC and reduced IRs in Mahurea exstipulata , resulting in some genic rearrangement, and a short inversion ( psb J– psb E) in Kielmeyera coriacea . Phylogenetic analyses recovered the clusioids and the five families as monophyletic and revealed that conflicts in relationships reported in the literature for the group agree with nodes concentrating uninformative or conflicting gene trees. Our study brings new insights about clusioid plastome architecture and its evolution.
The ancient tropical rainforest tree Symphonia globulifera L. f. (Clusiaceae) was not restricted to postulated Pleistocene refugia in Atlantic Equatorial Africa
Understanding the history of forests and their species' demographic responses to past disturbances is important for predicting impacts of future environmental changes. Tropical rainforests of the Guineo-Congolian region in Central Africa are believed to have survived the Pleistocene glacial periods in a few major refugia, essentially centred on mountainous regions close to the Atlantic Ocean. We tested this hypothesis by investigating the phylogeographic structure of a widespread, ancient rainforest tree species, Symphonia globulifera L. f. (Clusiaceae), using plastid DNA sequences (chloroplast DNA [cpDNA], psbA-trnH intergenic spacer) and nuclear microsatellites (simple sequence repeats, SSRs). SSRs identified four gene pools located in Benin, West Cameroon, South Cameroon and Gabon, and São Tomé. This structure was also apparent at cpDNA. Approximate Bayesian Computation detected recent bottlenecks approximately dated to the last glacial maximum in Benin, West Cameroon and São Tomé, and an older bottleneck in South Cameroon and Gabon, suggesting a genetic effect of Pleistocene cycles of forest contraction. CpDNA haplotype distribution indicated wide-ranging long-term persistence of S. globulifera both inside and outside of postulated forest refugia. Pollen flow was four times greater than that of seed in South Cameroon and Gabon, which probably enabled rapid population recovery after bottlenecks. Furthermore, our study suggested ecotypic differentiation-coastal or swamp vs terra firme-in S. globulifera. Comparison with other tree phylogeographic studies in Central Africa highlighted the relevance of species-specific responses to environmental change in forest trees.
Medicinal Potential of Garcinia Species and Their Compounds
Garcinia is a genus of Clusiaceae, distributed throughout tropical Asia, Africa, New Caledonia, Polynesia, and Brazil. Garcinia plants contain a broad range of biologically active metabolites which, in the last few decades, have received considerable attention due to the chemical compositions of their extracts, with compounds which have been shown to have beneficial effects in several diseases. Our work had the objective of reviewing the benefits of five Garcinia species (G. brasiliensis, G. gardneriana, G. pedunculata, G. cambogia, and G. mangstana). These species provide a rich natural source of bioactive compounds with relevant therapeutic properties and anti-inflammatory effects, such as for the treatment of skin disorders, wounds, pain, and infections, having demonstrated antinociceptive, antioxidant, antitumoral, antifungal, anticancer, antihistaminic, antiulcerogenic, antimicrobial, antiviral, vasodilator, hypolipidemic, hepatoprotective, nephroprotective, and cardioprotective properties. This demonstrates the relevance of the genus as a rich source of compounds with valuable therapeutic properties, with potential use in the prevention and treatment of nontransmissible chronic diseases.
Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species
The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations.
Taxonomic treatment of three Garcinia species (section Brindonia, Clusiaceae) in Thailand, with six new synonyms and ten lectotypifications
The taxonomy of three Garcinia species, G. cowa var. cowa, G. oliveri, and G. schomburgkiana (section Brindonia, Clusiaceae), is revised for Thailand. All three species have edible fruits, young shoots, and leaves with a sour taste. Morphological descriptions and illustrations are provided, along with notes on distribution, phenology, conservation status, etymology, vernacular names, uses, specimens examined, habitats, and ecology. Four taxa, G. cochinchinensis, G. fusca, G. nigrolineata, and G. plena, are newly synonymized under G. cowa var. cowa, and two taxa, G. delpyana and G. bancana var. curtisii, are newly synonymized under G. oliveri. Ten names are lectotypified here, including six synonyms of G. cowa var. cowa (G. cochinchinensis, G. fusca, G. kunstleri, G. loureiroi, G. nigrolineata, and G. plena), G. oliveri and its two synonyms (G. delpyana and G. curtisii), and G. schomburgkiana. All three species have a conservation status of Least Concern (LC).
Dalbergia ecastaphyllum (L.) Taub. and Symphonia globulifera L.f.: The Botanical Sources of Isoflavonoids and Benzophenones in Brazilian Red Propolis
The Brazilian red propolis (BRP) constitutes an important commercial asset for northeast Brazilian beekeepers. The role of Dalbergia ecastaphyllum (L.) Taub. (Fabaceae) as the main botanical source of this propolis has been previously confirmed. However, in addition to isoflavonoids and other phenolics, which are present in the resin of D. ecastaphyllum, samples of BRP are reported to contain substantial amounts of polyprenylated benzophenones, whose botanical source was unknown. Therefore, field surveys, phytochemical and chromatographic analyses were undertaken to confirm the botanical sources of the red propolis produced in apiaries located in Canavieiras, Bahia, Brazil. The results confirmed D. ecastaphyllum as the botanical source of liquiritigenin (1), isoliquiritigenin (2), formononetin (3), vestitol (4), neovestitol (5), medicarpin (6), and 7-O-neovestitol (7), while Symphonia globulifera L.f. (Clusiaceae) is herein reported for the first time as the botanical source of polyprenylated benzophenones, mainly guttiferone E (8) and oblongifolin B (9), as well as the triterpenoids β-amyrin (10) and glutinol (11). The chemotaxonomic and economic significance of the occurrence of polyprenylated benzophenones in red propolis is discussed.