Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
327 result(s) for "Coadaptation"
Sort by:
The ecology of human–carnivore coexistence
With a shrinking supply of wilderness and growing recognition that top predators can have a profound influence on ecosystems, the persistence of large carnivores in human-dominated landscapes has emerged as one of the greatest conservation challenges of our time. Carnivores fascinate society, yet these animals pose threats to people living near them, resulting in high rates of carnivore death near human settlements. We used 41 y of demographic data for more than 2,500 brown bears—one of the world’s most widely distributed and conflict-prone carnivores—to understand the behavioral and demographic mechanisms promoting carnivore coexistence in human-dominated landscapes. Bear mortality was high and unsustainable near people, but a human-induced shift to nocturnality facilitated lower risks of bear mortality and rates of conflict with people. Despite these behavioral shifts, projected population growth rates for bears in human-dominated areas revealed a source-sink dynamic. Despite some female bears successfully reproducing in the sink areas, bear persistence was reliant on a supply of immigrants from areas with minimal human influence (i.e., wilderness). Such mechanisms of coexistence reveal a striking paradox: Connectivity to wilderness areas supplies bears that likely will die from people, but these bears are essential to avert local extirpation. These insights suggest carnivores contribute to human–carnivore coexistence through behavioral and demographic mechanisms, and that connected wilderness is critical to sustain coexistence landscapes.
Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap
Mitochondrial genes are widely used in taxonomy and systematics because high mutation rates lead to rapid sequence divergence and because such changes have long been assumed to be neutral with respect to function. In particular, the nucleotide sequence of the mitochondrial gene cytochrome c oxidase subunit 1 has been established as a highly effective DNA barcode for diagnosing the species boundaries of animals. Rarely considered in discussions of mitochondrial evolution in the context of systematics, speciation, or DNA barcodes, however, is the genomic architecture of the eukaryotes: Mitochondrial and nuclear genes must function in tight coordination to produce the complexes of the electron transport chain and enable cellular respiration. Coadaptation of these interacting gene products is essential for organism function. I extend the hypothesis that mitonuclear interactions are integral to the process of speciation. To maintain mitonuclear coadaptation, nuclear genes, which code for proteins in mitochondria that cofunction with the products of mitochondrial genes, must coevolve with rapidly changing mitochondrial genes. Mitonuclear coevolution in isolated populations leads to speciation because population‐specific mitonuclear coadaptations create between‐population mitonuclear incompatibilities and hence barriers to gene flow between populations. In addition, selection for adaptive divergence of products of mitochondrial genes, particularly in response to climate or altitude, can lead to rapid fixation of novel mitochondrial genotypes between populations and consequently to disruption in gene flow between populations as the initiating step in animal speciation. By this model, the defining characteristic of a metazoan species is a coadapted mitonuclear genotype that is incompatible with the coadapted mitochondrial and nuclear genotype of any other population. Animals must have coadapted mitochondrial and nuclear genotypes to enable core respiratory function, and selection for coadaptation leads to divergence between populations in mitonuclear genotype. Barcoding of mitochondrial genes accurately identifies species because species are defined by mitonuclear genotype. Mitonuclear coevolution to achieve better adaptive function of cellular respiration can also drive speciation.
The evolution and changing ecology of the African hominid oral microbiome
The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine–platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.
The genomic basis of Red Queen dynamics during rapid reciprocal host–pathogen coevolution
Red Queen dynamics, involving coevolutionary interactions between species, are ubiquitous, shaping the evolution of diverse biological systems. To date, information on the underlying selection dynamics and the involved genome regions is mainly available for bacteria–phage systems or only one of the antagonists of a eukaryotic host–pathogen interaction. We add to our understanding of these important coevolutionary interactions using an experimental host–pathogen model, which includes the nematode Caenorhabditis elegans and its pathogen Bacillus thuringiensis. We combined experimental evolution with time-shift experiments, in which a focal host or pathogen is tested against a coevolved antagonist from the past, present, or future, followed by genomic analysis. We show that (i) coevolution occurs rapidly within few generations, (ii) temporal coadaptation at the phenotypic level is found in parallel across replicate populations, consistent with antagonistic frequency-dependent selection, (iii) genomic changes in the pathogen match the phenotypic pattern and include copy number variations of a toxin-encoding plasmid, and (iv) host genomic changes do not match the phenotypic pattern and likely involve selective responses at more than one locus. By exploring the dynamics of coevolution at the phenotypic and genomic level for both host and pathogen simultaneously, our findings demonstrate a more complex model of the Red Queen, consisting of distinct selective processes acting on the two antagonists during rapid and reciprocal coadaptation.
Understanding Host-Switching by Ecological Fitting
Despite the fact that parasites are highly specialized with respect to their hosts, empirical evidence demonstrates that host switching rather than co-speciation is the dominant factor influencing the diversification of host-parasite associations. Ecological fitting in sloppy fitness space has been proposed as a mechanism allowing ecological specialists to host-switch readily. That proposal is tested herein using an individual-based model of host switching. The model considers a parasite species exposed to multiple host resources. Through time host range expansion can occur readily without the prior evolution of novel genetic capacities. It also produces non-linear variation in the size of the fitness space. The capacity for host colonization is strongly influenced by propagule pressure early in the process and by the size of the fitness space later. The simulations suggest that co-adaptation may be initiated by the temporary loss of less fit phenotypes. Further, parasites can persist for extended periods in sub-optimal hosts, and thus may colonize distantly related hosts by a \"stepping-stone\" process.
Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves
In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis,” a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.
Correction: Coadaptation of Offspring Begging and Parental Provisioning - An Evolutionary Ecological Perspective on Avian Family Life
The wrong version of Figure 3 was used in the published article. Please use the following link to download the correct version of this figure: thumbnail Download: * PPT PowerPoint slide * PNG larger image * TIFF original image Figures Citation: Estramil N, Eens M, Müller W (2013) Correction: Coadaptation of Offspring Begging and Parental Provisioning - An Evolutionary Ecological Perspective on Avian Family Life.
Exploratory analysis of multi‐trait coadaptations in light of population history
During the process of range expansion, populations encounter a variety of environments. They respond to the local environments by modifying their mutually interacting traits. Common approaches of landscape analysis include first focusing on the genes that undergo diversifying selection or directional selection in response to environmental variation. To understand the whole history of populations, it is ideal to capture the history of their range expansion with reference to the series of surrounding environments and to infer the multitrait coadaptation. To this end, we propose a complementary approach; it is an exploratory analysis using up‐to‐date methods that integrate population genetic features and features of selection on multiple traits. First, we conduct correspondence analysis of site frequency spectra, traits, and environments with auxiliary information of population‐specific fixation index (FST). This visualizes the structure and the ages of populations and helps infer the history of range expansion, encountered environmental changes, and selection on multiple traits. Next, we further investigate the inferred history using an admixture graph that describes the population split and admixture. Finally, principal component analysis of the selection on edge‐by‐trait (SET) matrix identifies multitrait coadaptation and the associated edges of the admixture graph. We introduce a newly defined factor loadings of environmental variables in order to identify the environmental factors that caused the coadaptation. A numerical simulation of one‐dimensional stepping‐stone population expansion showed that the exploratory analysis reconstructed the pattern of the environmental selection that was missed by analysis of individual traits. Analysis of a public dataset of natural populations of black cottonwood in northwestern America identified the first principal component (PC) coadaptation of photosynthesis‐ vs growth‐related traits responding to the geographical clines of temperature and day length. The second PC coadaptation of volume‐related traits suggested that soil condition was a limiting factor for aboveground environmental selection. During the process of range expansion, populations encounter a variety of environments and respond to the local environments by modifying their mutually interacting traits. To capture the history of their range expansion with reference to the series of surrounding environments and to infer the multitrait coadaptation, we propose a complementary approach; it is an exploratory analysis using up‐to‐date methods that integrates population genetic features and features of selection on multiple traits.
The development of malaria parasites in the mosquito midgut
Summary The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage.
microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes
MicroRNAs (miRNAs) are endogenously expressed small noncoding RNAs. The genomic locations of animal miRNAs are significantly clustered in discrete loci. We found duplication and de novo formation were important mechanisms to create miRNA clusters and the clustered miRNAs tend to be evolutionarily conserved. We proposed a “functional co-adaptation” model to explain how clustering helps newly emerged miRNAs survive and develop functions. We presented evidence that abundance of miRNAs in the same clusters were highly correlated and those miRNAs exerted cooperative repressive effects on target genes in human tissues. By transfecting miRNAs into human and fly cells and extensively profiling the transcriptome alteration with deep-sequencing, we further demonstrated the functional co-adaptation between new and old miRNAs in the miR-17–92 cluster. Our population genomic analysis suggest that positive Darwinian selection might be the driving force underlying the formation and evolution of miRNA clustering. Our model provided novel insights into mechanisms and evolutionary significance of miRNA clustering.