Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
6
result(s) for
"Coast changes-Mathematical models"
Sort by:
Modelling for Coastal Hydraulics and Engineering
2010,2014
Mechanistic models are often employed to simulate processes in coastal environments. However, these predictive tools are highly specialized, involve certain assumptions and limitations, and can be manipulated only by experienced engineers who have a thorough understanding of the underlying principles. This results in significant constraints on thei
Modelling Coastal Vulnerability
Modelling Coastal Vulnerability focuses on the vulnerability of societies in low lying coastal and deltaic environments to tropical cyclonic storms and floods. Models that explore vulnerability under various planned and unplanned conditions hardly exist. Within the Andhra Pradesh Cyclone Hazard Mitigation Project an Expert Decision Support System (EDSS) was designed and implemented linking coastal vulnerability to integrated coastal zone management (ICZM). This model development provided unique material and experiences for the research presented here. The interpretation and critical inquiry of the model has led to new knowledge on the design of such a model as well as on the use of its results in reducing vulnerability through planning.
A guide to modeling coastal morphology
by
Roelvink, Dano
,
Reniers, Ad
in
Civil Engineering (including Earthquake and Tsunami)
,
Coast changes
,
Coast changes -- Mathematical models
2011,2012
Process-based morphodynamic Modeling is one of the relatively new tools at the disposal of coastal scientists, engineers and managers. On paper, it offers the possibility to analyse morphological processes and to investigate the effects of various measures one might consider to alleviate some problems. For these to be applied in practice, a model should be relatively straightforward to set up. It should be accurate enough to represent the details of interest, it should run long enough and robustly to see the real effects happen, and the physical processes represented in such a way that the sediment generally goes in the right direction at the right rate. Next, practitioners must be able to judge if the patterns and outcomes of the model are realistic and finally, translate these colour pictures and vector plots to integrated parameters that are relevant to the client or end user. In a nutshell, this book provides an in-depth review of ways to model coastal processes, including many hands-on exercises.