Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
112 result(s) for "Coastal animals British Columbia."
Sort by:
Visual surveys provide baseline data on small vessel traffic and waterbirds in a coastal protected area
The coastal waters of southern British Columbia, Canada, encompass habitat of international conservation significance to coastal and marine birds, including sizeable areas designated in the early 1900s as Migratory Bird Sanctuaries (MBS) to protect overwintering waterfowl from hunting near urban centres. Two of these, Shoal Harbour (SHMBS) and Victoria Harbour (VHMBS), have seen significant marine infrastructure development in recent decades and experience considerable vessel traffic. Vessel-related stressors are known to affect waterbirds, but traffic characteristics in coastal urban areas are poorly understood for the smaller vessels not tracked by Automatic Identification Systems (AIS). We conducted a pilot study using shore-based observers to develop small-vessel baselines for the winter months, when regional waterbird numbers are highest. During our surveys we recorded considerable inter-site variability in vessel traffic characteristics, with one site (SHMBS) a source of nearly twice as many vessel transits as the other (VHMBS). Most recorded vessels were small watercraft (mean length 26 ± 17′, mode 18′), and vessels at the high-traffic site were both shorter and faster on average. One in six vessels were classified as ‘noisy’, of interest given that noise is an important component of vessel disturbance of waterbirds and other marine animals. Few vessels (7% of all recorded) were of the type required to carry AIS transponders, which highlights the monitoring gap created by using AIS-based approaches alone in nearshore waters, and allows for correction of AIS-derived vessel counts. Waterbird community composition also varied by locality, with one site dominated by gulls (Laridae), cormorants (Phalacrocoracidae), and seaducks (Tribe Mergini), and the other by gulls, cormorants, and alcids (Alcidae). Our results demonstrate that fine-scale local variability must be taken into account when managing for vessel traffic disturbance of waterbirds, particularly at sites of high human population density and increasing coastal development.
Predicting marine habitat for marbled murrelets during breeding and nonbreeding seasons in the Salish Sea, British Columbia, Canada
The marbled murrelet ( Brachyramphus marmoratus ) is a small seabird inhabiting coastal regions along the Pacific coast of North America, and nests in old-growth forests usually within 80 km from shore. The Canadian population of marbled murrelets is listed as Threatened under the federal Species at Risk Act . To investigate the species’ marine distribution, we conducted analyses of the occurrence of marbled murrelets at-sea between 2000 and 2022, utilizing at-sea and marine shoreline surveys in the Canadian portion of the Salish Sea. The data were divided into breeding season (April to August) and non-breeding season (September to March) to examine the relationship between environmental covariates and the species’ distribution. We considered terrestrial covariates related to potential nesting habitat, as well as marine covariates related to Pacific sand lance ( Ammodytes personatus ) quality habitat, slope, depth, streams, tidal currents, shorelines and climate indices (NPGO). We compared marine distribution between breeding and nonbreeding seasons and predicted variations in covariate relationships. Our study focuses on identifying averaged relationships and key spatial areas to gauge habitat quality at a landscape scale. Using a Generalized Additive Modelling approach, we found that both marine and terrestrial covariates contributed to predicting murrelet distribution during both seasons. Notably, Pacific sand lance habitat played a significant role in both the breeding and nonbreeding season, while the overall amount of nesting habitat within an 80 km radius influenced occurrence probability in the nonbreeding season. Our analysis accurately predicted distribution patterns at a resolution of 3 x 3 km with an AUC of 0.89 and AUPRC of 0.52 for the breeding season, and AUC of 0.88 and a AUPRC of 0.28 for non-breeding season. Overall, our study highlights both terrestrial and marine drivers that influence the marine distribution of this threatened species and informs Canadian conservation efforts.
Using traditional ecological knowledge to understand and adapt to climate and biodiversity change on the Pacific coast of North America
We investigate the perceptions and impacts of climate change on 11 Indigenous communities in Northern British Columbia and Southeast Alaska. This coastal region constitutes an extremely dynamic and resilient socialecological system where Indigenous Peoples have been adjusting to changing climate and biodiversity for millennia. The region is a bellwether for biodiversity changes in coastal, forest, and montane environments that link the arctic to more southerly latitudes on the Pacific coast. Ninety-six Elders and resource users were interviewed to record Traditional Ecological Knowledge (TEK) and observations regarding weather, landscape, and resource changes, especially as concerns what we term Cultural Keystone Indicator Species (CKIS), which provide a unique lens into the effects of environmental change. Our findings show that Indigenous residents of these communities are aware of significant environmental changes over their lifetimes, and an acceleration in changes over the last 15–20 years, not only in weather patterns, but also in the behaviour, distributions, and availability of important plants and animals. Within a broader ecological and social context of dwelling, we suggest ways this knowledge can assist communities in responding to future environmental changes using a range of place-based adaptation modes.
Epizootics of wild fish induced by farm fish
The continuing decline of ocean fisheries and rise of global fish consumption has driven aquaculture growth by 10% annually over the last decade. The association of fish farms with disease emergence in sympatric wild fish stocks remains one of the most controversial and unresolved threats aquaculture poses to coastal ecosystems and fisheries. We report a comprehensive analysis of the spread and impact of farm-origin parasites on the survival of wild fish populations. We mathematically coupled extensive data sets of native parasitic sea lice (Lepeophtheirus salmonis) transmission and pathogenicity on migratory wild juvenile pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon. Farm-origin lice induced 9-95% mortality in several sympatric wild juvenile pink and chum salmon populations. The epizootics arise through a mechanism that is new to our understanding of emerging infectious diseases: fish farms undermine a functional role of host migration in protecting juvenile hosts from parasites associated with adult hosts. Although the migratory life cycles of Pacific salmon naturally separate adults from juveniles, fish farms provide L. salmonis novel access to juvenile hosts, in this case raising infection rates for at least the first approximately 2.5 months of the salmon's marine life (approximately 80 km of the migration route). Spatial segregation between juveniles and adults is common among temperate marine fishes, and as aquaculture continues its rapid growth, this disease mechanism may challenge the sustainability of coastal ecosystems and economies.
3500 years of shellfish mariculture on the Northwest Coast of North America
Ancient systems of mariculture were foundations of social-ecological systems of many coastal Indigenous Peoples. However, since such systems either do not leave tangible remains in the archaeological record, and/or are hard to date, we know little about their development and use. Clam gardens, traditional mariculture features located within the intertidal zone along the Northwest Coast of North America, are composed of a rock wall positioned at the low tide mark and a flattened terrace on the landward side of the wall. Because these features are largely composed of rock and sediment, and have complex formation histories, they can be difficult to age. On northern Quadra Island, British Columbia, we identify three variations in clam garden form, constructed in different geomorphological settings, each of which require different sampling approaches to obtain ages on construction and ongoing use. To age the clam gardens, we consider radiocarbon dating of invertebrates that inhabit beach deposits (both pre- and post-garden construction), and the relationship of the gardens and clam samples to the local sea level history and taphonomic processes. Within our study area, we find clam gardens have been in use for 3500 years, likely corresponding to other social and ecological changes of the time. These data allow us to formulate guidelines on samples most suitable to constrain the age of initial and on-going wall construction and use of clam gardens, which can be extrapolated to dating other ancient mariculture features in other regions. Such dating programs are the foundation for understanding the long-term development of traditional marine management practices and how they are situated in broader social-ecological systems.
Ancient Clam Gardens Increased Shellfish Production: Adaptive Strategies from the Past Can Inform Food Security Today
Maintaining food production while sustaining productive ecosystems is among the central challenges of our time, yet, it has been for millennia. Ancient clam gardens, intertidal rock-walled terraces constructed by humans during the late Holocene, are thought to have improved the growing conditions for clams. We tested this hypothesis by comparing the beach slope, intertidal height, and biomass and density of bivalves at replicate clam garden and non-walled clam beaches in British Columbia, Canada. We also quantified the variation in growth and survival rates of littleneck clams (Leukoma staminea) we experimentally transplanted across these two beach types. We found that clam gardens had significantly shallower slopes than non-walled beaches and greater densities of L. staminea and Saxidomus giganteus, particularly at smaller size classes. Overall, clam gardens contained 4 times as many butter clams and over twice as many littleneck clams relative to non-walled beaches. As predicted, this relationship varied as a function of intertidal height, whereby clam density and biomass tended to be greater in clam gardens compared to non-walled beaches at relatively higher intertidal heights. Transplanted juvenile L. staminea grew 1.7 times faster and smaller size classes were more likely to survive in clam gardens than non-walled beaches, specifically at the top and bottom of beaches. Consequently, we provide strong evidence that ancient clam gardens likely increased clam productivity by altering the slope of soft-sediment beaches, expanding optimal intertidal clam habitat, thereby enhancing growing conditions for clams. These results reveal how ancient shellfish aquaculture practices may have supported food security strategies in the past and provide insight into tools for the conservation, management, and governance of intertidal seascapes today.
Declining Wild Salmon Populations in Relation to Parasites from Farm Salmon
Rather than benefiting wild fish, industrial aquaculture may contribute to declines in ocean fisheries and ecosystems. Farm salmon are commonly infected with salmon lice (Lepeophtheirus salmonis), which are native ectoparasitic copepods. We show that recurrent louse infestations of wild juvenile pink salmon (Oncorhynchus gorbuscha), all associated with salmon farms, have depressed wild pink salmon populations and placed them on a trajectory toward rapid local extinction. The louse-induced mortality of pink salmon is commonly over 80% and exceeds previous fishing mortality. If outbreaks continue, then local extinction is certain, and a 99% collapse in pink salmon population abundance is expected in four salmon generations. These results suggest that salmon farms can cause parasite outbreaks that erode the capacity of a coastal ecosystem to support wild salmon populations.
Expansion of the known distribution of the coastal tailed frog, Ascaphus truei, in British Columbia, Canada, using robust eDNA detection methods
The coastal tailed frog (Ascaphus truei) is endemic to the Pacific Northwest of North America and is listed as a species of Special Concern under the Canadian Species at Risk Act. Its range is limited to British Columbia where it occurs widely west of the Coast Mountain Ranges extending north almost to the Alaskan Panhandle. The present study focused on surveying within the Cayoosh, Bridge (Shulaps), Seton, Anderson, Carpenter, and Downton Lake drainages. Four years of previous inventory efforts using conventional time-constrained search (TCS) methods detected tailed frog at 23/292 discrete sites (7.9% detection rate) in seven watersheds. Non-invasive environmental DNA (eDNA) methods hold promise for cryptic and low-abundance species detection. We rigorously validated a quantitative real-time polymerase chain reaction (qPCR)-based tool for detecting coastal tailed frog eDNA in water samples. This eASTR4 test is highly specific and sensitive. We applied a two-step targeted eDNA analysis approach on duplicate filtered water samples from a total of 72 sites collected over five days. The first IntegritE-DNA step mitigates false negative results and tests all DNA samples for the ability to support amplification from endogenous plant chloroplast DNA as a measure of sample viability. Three DNA samples failed this step even after inhibitor clean up suggesting that these samples were poor quality and not reliable for targeted species' DNA analyses. All other DNA samples were deemed viable and were then tested for species-specific DNA. Coastal tailed frog eDNA was detected in 55/72 (76%) discrete stream reaches; nine sites with historical known occurrence were all eDNA positive. The false negative rate for TCS compared to eDNA methods was 58%. The results expand known coastal tailed frog distribution to 24 watersheds effectively more than tripling extant occurrences and confirm a previously suspected, apparently isolated coastal tailed frog metapopulation in the Shulaps drainage.
Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific
As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2-3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty.
Wrack deposition on different beach types: Spatial and temporal variation in the pattern of subsidy
The onshore deposition of macroalgal and macrophyte wrack provides a potentially significant marine subsidy to intertidal and supratidal herbivore and decomposer communities. Based on the study of daily input loads to beaches, we estimated summer wrack deposition of up to 140 Mg (dry mass)/km shoreline in Barkley Sound, British Columbia. However, input rates were highly variable depending on beach type, nearshore hydrodynamics, and buoyancy characteristics of the wrack. Cobble beaches retained ~10 times and 30 times more wrack than did gravel and sand beaches, respectively. Cobble and gravel beaches also differed in species composition of new (fresh) wrack input, with Macrocystis integrifolia being characteristic for the former and Nereocystis luetkeana for the latter, which we attribute to buoyancy characteristics of the floating debris. On sand beaches, Phyllospadix spp. and Enteromorpha spp. were the dominant wrack species. Species composition of freshly deposited wrack also depended on wave exposure, but predictability based on the species pool within a beach's catchment was restricted. Drift lines of aging wrack differed from freshly deposited wrack in species composition, probably due to wrack decomposition that results in fluxes of nutrients and energy between the adjacent marine and terrestrial habitats. We hold that the characteristics of a given beach, e.g., substratum and wave exposure, and their effects on wrack input, will have important ecological and biogeochemical implications for the marine-terrestrial ecotone.