Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
376
result(s) for
"Colibacillosis"
Sort by:
Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies
by
Kathayat, Dipak
,
Rajashekara, Gireesh
,
Ranjit, Sochina
in
Antibiotic resistance
,
Antibiotics
,
APEC
2021
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and recent reports have suggested APEC as a potential foodborne zoonotic pathogen. Herein, we discuss the virulence and pathogenesis factors of APEC, review the zoonotic potential, provide the current status of antibiotic resistance and progress in vaccine development, and summarize the alternative control measures being investigated. In addition to the known virulence factors, several other factors including quorum sensing system, secretion systems, two-component systems, transcriptional regulators, and genes associated with metabolism also contribute to APEC pathogenesis. The clear understanding of these factors will help in developing new effective treatments. The APEC isolates (particularly belonging to ST95 and ST131 or O1, O2, and O18) have genetic similarities and commonalities in virulence genes with human uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) and abilities to cause urinary tract infections and meningitis in humans. Therefore, the zoonotic potential of APEC cannot be undervalued. APEC resistance to almost all classes of antibiotics, including carbapenems, has been already reported. There is a need for an effective APEC vaccine that can provide protection against diverse APEC serotypes. Alternative therapies, especially the virulence inhibitors, can provide a novel solution with less likelihood of developing resistance.
Journal Article
The influence of drugs with a synergistic mixture of phencides on the intensity of invasion, morphological blood parameters and leukocyte formula in chicken eimeriosis mixed with colibacillosis
by
Mamadullaev, Gulmurod
,
Ibragimov, Davletbay
,
Daminov, Asadullo
in
Birds
,
Blood
,
Colibacillosis
2024
In this work, we studied the synergistic preparations phencid and phencid premix prepared by us in doses of 288 mg/kg and 1000 mg/kg to the feed, which reduce the intensity of invasion by almost 4-5 times and their use at the above doses does not negatively affect the morphological parameters and the leukocyte formula of the blood of birds. Considering the relevance, these drugs can be used for the prevention and treatment of these diseases. For this purpose, birds were experimentally infected simultaneously with pathogens of Eimeria and Escherichiosis. As a result, it was found that the tested drugs reduce the intensity of invasion by 4-5 times and do not have a negative effect on the morphological composition of the blood and the leukocyte formula.
Journal Article
Swine Colibacillosis: Global Epidemiologic and Antimicrobial Scenario
by
Almeida, Carina
,
Castro, Joana
,
Araújo, Daniela
in
AMR bacteria
,
Animal culture
,
Animal husbandry
2023
Swine pathogenic infection caused by Escherichia coli, known as swine colibacillosis, represents an epidemiological challenge not only for animal husbandry but also for health authorities. To note, virulent E. coli strains might be transmitted, and also cause disease, in humans. In the last decades, diverse successful multidrug-resistant strains have been detected, mainly due to the growing selective pressure of antibiotic use, in which animal practices have played a relevant role. In fact, according to the different features and particular virulence factor combination, there are four different pathotypes of E. coli that can cause illness in swine: enterotoxigenic E. coli (ETEC), Shiga toxin-producing E. coli (STEC) that comprises edema disease E. coli (EDEC) and enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and extraintestinal pathogenic E. coli (ExPEC). Nevertheless, the most relevant pathotype in a colibacillosis scenario is ETEC, responsible for neonatal and postweaning diarrhea (PWD), in which some ETEC strains present enhanced fitness and pathogenicity. To explore the distribution of pathogenic ETEC in swine farms and their diversity, resistance, and virulence profiles, this review summarizes the most relevant works on these subjects over the past 10 years and discusses the importance of these bacteria as zoonotic agents.
Journal Article
Genome evolution and the emergence of pathogenicity in avian Escherichia coli
2021
Chickens are the most common birds on Earth and colibacillosis is among the most common diseases affecting them. This major threat to animal welfare and safe sustainable food production is difficult to combat because the etiological agent, avian pathogenic
Escherichia coli
(APEC), emerges from ubiquitous commensal gut bacteria, with no single virulence gene present in all disease-causing isolates. Here, we address the underlying evolutionary mechanisms of extraintestinal spread and systemic infection in poultry. Combining population scale comparative genomics and pangenome-wide association studies, we compare
E. coli
from commensal carriage and systemic infections. We identify phylogroup-specific and species-wide genetic elements that are enriched in APEC, including pathogenicity-associated variation in 143 genes that have diverse functions, including genes involved in metabolism, lipopolysaccharide synthesis, heat shock response, antimicrobial resistance and toxicity. We find that horizontal gene transfer spreads pathogenicity elements, allowing divergent clones to cause infection. Finally, a Random Forest model prediction of disease status (carriage vs. disease) identifies pathogenic strains in the emergent ST-117 poultry-associated lineage with 73% accuracy, demonstrating the potential for early identification of emergent APEC in healthy flocks.
It is unclear how gut-dwelling
E. coli
bacteria often emerge to cause systemic infection in chickens. Here, Mageiros et al. use population genomics and pangenome-wide association studies to identify genetic elements associated with pathogenicity in avian
E. coli
.
Journal Article
Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health
by
Fairbrother, John M.
,
Van Goor, Angelica
,
Mellata, Melha
in
Animal diseases
,
Animal models
,
Animals
2017
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are important pathogens that cause diverse diseases in humans and poultry. Some E. coli isolates from chicken feces contain ExPEC-associated virulence genes, so appear potentially pathogenic; they conceivably could be transmitted to humans through handling and/or consumption of contaminated meat. However, the actual extraintestinal virulence potential of chicken-source fecal E. coli is poorly understood. Here, we assessed whether fecal E. coli isolates from healthy production chickens could cause diseases in a chicken model of avian colibacillosis and three rodent models of ExPEC-associated human infections. From 304 E. coli isolates from chicken fecal samples, 175 E. coli isolates were screened by PCR for virulence genes associated with human-source ExPEC or avian pathogenic E. coli (APEC), an ExPEC subset that causes extraintestinal infections in poultry. Selected isolates genetically identified as ExPEC and non-ExPEC isolates were assessed in vitro for virulence-associated phenotypes, and in vivo for disease-causing ability in animal models of colibacillosis, sepsis, meningitis, and urinary tract infection. Among the study isolates, 13% (40/304) were identified as ExPEC; the majority of these were classified as APEC and uropathogenic E. coli, but none as neonatal meningitis E. coli. Multiple chicken-source fecal ExPEC isolates resembled avian and human clinical ExPEC isolates in causing one or more ExPEC-associated illnesses in experimental animal infection models. Additionally, some isolates that were classified as non-ExPEC were able to cause ExPEC-associated illnesses in animal models, and thus future studies are needed to elucidate their mechanisms of virulence. These findings show that E. coli isolates from chicken feces contain ExPEC-associated genes, exhibit ExPEC-associated in vitro phenotypes, and can cause ExPEC-associated infections in animal models, and thus may pose a health threat to poultry and consumers.
Journal Article
The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen
by
Dhakal, Sabin
,
Dozois, Charles M.
,
Pokharel, Pravil
in
Animals
,
Antibiotic resistance
,
Antibiotics
2023
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Journal Article
Genomic analysis of Escherichia coli strains isolated from diseased chicken in the Czech Republic
by
Masarikova, Martina
,
Cejkova, Darina
,
Papouskova, Aneta
in
Analysis
,
Animals
,
Avian colibacillosis
2020
Background
Avian pathogenic
Escherichia coli
(APEC) can cause various extraintestinal infections in poultry, resulting in massive economic losses in poultry industry. In addition, some avian
E. coli
strains may have zoonotic potential, making poultry a possible source of infection for humans. Due to its extreme genetic diversity, this pathotype remains poorly defined. This study aimed to investigate the diversity of colibacillosis-associated
E. coli
isolates from Central European countries with a focus on the Czech Republic.
Results
Of 95 clinical isolates subjected to preliminary characterization, 32 were selected for whole-genome sequencing. A multi resistant phenotype was detected in a majority of the sequenced strains with the predominant resistance to β-lactams and quinolones being associated with TEM-type beta-lactamase genes and chromosomal
gyrA
mutations respectively. The phylogenetic analysis confirmed a great diversity of isolates, that were derived from nearly all phylogenetic groups, with predominace of B2, B1 and C phylogroups. Clusters of closely related isolates within ST23 (phylogroup C) and ST429 (phylogroup B2) indicated a possible local spread of these clones. Besides, the ST429 cluster carried
bla
CMY-2, − 59
genes for AmpC beta-lactamase and isolates of both clusters were generally well-equipped with virulence-associated genes, with considerable differences in distribution of certain virulence-associated genes between phylogenetically distant lineages. Other important and potentially zoonotic APEC STs were detected, incl. ST117, ST354 and ST95, showing several molecular features typical for human ExPEC.
Conclusions
The results support the concept of local spread of virulent APEC clones, as well as of zoonotic potential of specific poultry-associated lineages, and highlight the need to investigate the possible source of these pathogenic strains.
Journal Article
Avian colibacillosis: still many black holes
by
Infectiologie et Santé Publique (UMR ISP) ; Institut National de la Recherche Agronomique (INRA)-Université de Tours (UT)
,
Schouler, Catherine
,
Guabiraba-Brito, Rodrigo
in
Animal biology
,
Animals
,
Black holes
2015
Avian pathogenic Escherichia coli (APEC) strains cause severe respiratory and systemic disease, threatening food security and avian welfare worldwide. Intensification of poultry production and the quick expansion of free-range production systems will increase the incidence of colibacillosis through greater exposure of birds to pathogens and stress. Therapy is mainly based on antibiotherapy and current vaccines have poor efficacy. Serotyping remains the most frequently used diagnostic method, only allowing the identification of a limited number of APEC strains. Several studies have demonstrated that the most common virulence factors studied in APEC are rarely all present in the same isolate, showing that APEC strains constitute a heterogeneous group. Different isolates may harbor different associations of virulence factors, each one able to induce colibacillosis. Despite its economical relevance, pathogenesis of colibacillosis is poorly understood. Our knowledge on the host response to APEC is based in very descriptive studies, mostly restricted to bacteriological and histopathological analysis of infected organs, mostly lungs. Furthermore, only a small number of APEC isolates has been used in experimental studies. In the present review we discuss current knowledge on APEC diversity and virulence, including host-response to infection and the associated inflammatory response with a focus on pulmonary colibacillosis.
Journal Article
Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance
2017
Intestinal infection with enterotoxigenic
Escherichia coli
(ETEC) is an important disease in swine resulting in significant economic losses. Knowledge about the epidemiology, the diagnostic approach and methods of control are of fundamental importance to tackle the disease. The ETEC causing neonatal colibacillosis mostly carry the fimbriae F4 (k88), F5 (k99), F6 (987P) or F41, while the ETEC of post-weaning diarrhoea carry the fimbriae F4 (k88) and F18. These fimbriae adhere to specific receptors on porcine intestinal brush border epithelial cells (enterocytes), starting the process of enteric infection. After this colonization, the bacteria produce one or more enterotoxins inducing diarrhoea, such as the heat stable toxin a (STa), the heat stable toxin b (STb), and the heat labile toxin (LT). A role in the pathogenesis of the disease was demonstrated for these toxins. The diagnosis of enteric colibacillosis is based on the isolation and quantification of the pathogenic
E.coli
coupled with the demonstration by PCR of the genes encoding for virulence factors (fimbriae and toxins). The diagnostic approach to enteric colibacillosis must consider the differential diagnosis and the potential different causes that can be involved in the outbreak.
Among the different methods of control of colibacillosis, the use of antimicrobials is widely practiced and antibiotics are used in two main ways: as prophylactic or metaphylactic treatment to prevent disease and for therapeutic purposes to treat diseased pigs.
An accurate diagnosis of enteric colibacillosis needs an appropriate sampling for the isolation and quantification of the ETEC responsible for the outbreak by using semi-quantitative bacteriology. Definitive diagnosis is based on the presence of characteristic lesions and results of bacteriology along with confirmation of appropriate virulence factors to identify the isolated
E.coli
. It is important to confirm the diagnosis and to perform antimicrobial sensitivity tests because antimicrobial sensitivity varies greatly among
E. coli
isolates. Growing concern on the increase of antimicrobial resistance force a more rational use of antibiotics and this can be achieved through a correct understanding of the issues related to antibiotic therapy and to the use of antibiotics by both practitioners and farmers.
Journal Article
Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia
by
Durango Galv´an, Harold Eduardo
,
Morales López, Hernando
,
Yepes Blandón, Jonny Andrés
in
Amplification
,
APEC
,
APEC, Pathogenesis, Molecular characterization, Chickens, Colibacillosis
2023
Avian pathogenic E. coli (APEC), produces an extraintestinal infection in chickens, turkeys, and other types of birds, called colibacillosis, which is considered one of the main causes of economic losses due to morbidity, mortality, and discard of poultry carcasses. The objective of the present study was to characterize the genetic profile of the virulence factors of different isolates of avian E. coli in Caloto, Cauca, Colombia. Materials and methods: E. coli was isolated and identified by biochemical tests, from 47 clinical isolates. Subsequently, the DNA was extracted using Chelex. Three multiplex PCRs were designed to amplify 13 virulence factors (iroN, hlyF, iss, iutA, frz, vat, sitA, KpsM, sitD, fimH, pstB, sopB, and uvrY), using primers previously reported for each. At the end, the amplification products were verified on agarose gels. Each isolate was classified according to the number of virulence factors: group A (between 10 and 13), group B (between 5 and 9), and group C (4 or less). Discussion and Conclusions: we were able to identify the presence of a group of virulence factors in clinical isolates of APEC, which allows us to demonstrate that both the frequency and the profile of virulence factors in the isolated strains showed a different profile than the reported by other authors. The virulence genes pstB and fimH were detected in all our samples, and the iss gene was the one with the lowest frequency. Finally, according to the number of virulence factors, the group A was the most frequent.
Journal Article