Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,969
result(s) for
"Colitis - genetics"
Sort by:
Intestinal epithelial damage-derived mtDNA activates STING-IL12 axis in dendritic cells to promote colitis
by
Bai, Jinzhao
,
Li, Xiaojiaoyang
,
Fan, Guifang
in
Animals
,
Colitis - chemically induced
,
Colitis - genetics
2024
The treatment of ulcerative colitis (UC) presents an ongoing clinical challenge. Emerging research has implicated that the cGAS-STING pathway promotes the progression of UC, but conflicting results have hindered the development of STING as a therapeutic target. In the current study, we aim to comprehensively elucidate the origins, downstream signaling and pathogenic roles of myeloid STING in colitis and colitis-associated carcinoma (CAC).
mice were constructed for inducible myeloid-specific deletion of STING. RNA-sequencing, flow cytometry, and multiplex immunohistochemistry were employed to investigate immune responses in DSS-induced colitis or AOM/DSS-induced carcinogenesis. Colonic organoids, primary bone marrow derived macrophages and dendritic cells, and splenic T cells were used for
studies.
We observed that myeloid STING knockout in adult mice inhibited macrophage maturation, reduced DC cell activation, and suppressed pro-inflammatory Th1 and Th17 cells, thereby protecting against both acute and chronic colitis and CAC. However, myeloid STING deletion in neonatal or tumor-present mice exhibited impaired immune tolerance and anti-tumor immunity. Furthermore, we found that TFAM-associated mtDNA released from damaged colonic organoids, rather than bacterial products, activates STING in dendritic cells in an extracellular vesicle-independent yet endocytosis-dependent manner. Both IRF3 and NF-κB are required for STING-mediated expression of IL-12 family cytokines, promoting Th1 and Th17 differentiation and contributing to excessive inflammation in colitis.
Detection of the TFAM-mtDNA complex from damaged intestinal epithelium by myeloid STING exacerbates colitis through IL-12 cytokines, providing new evidence to support the development of STING as a therapeutic target for UC and CAC.
Journal Article
Mitochondrial DNA Is a Pro-Inflammatory Damage-Associated Molecular Pattern Released During Active IBD
2018
Abstract
Background
Due to common evolutionary origins, mitochondrial DNA (mtDNA) shares many similarities with immunogenic bacterial DNA. MtDNA is recognized as a pro-inflammatory damage-associated molecular pattern (DAMP) with a pathogenic role in several inflammatory diseases. We hypothesised that mtDNA is released during active disease, serving as a key pro-inflammatory factor in inflammatory bowel disease (IBD).
Methods
Between 2014 and 2015, we collected plasma separated within 2 hours of sampling from 97 prospectively recruited IBD patients (67 ulcerative colitis [UC] and 30 Crohn's disease [CD]) and 40 non-IBD controls. We measured circulating mtDNA using quantitative polymerase chain reaction (amplifying mitochondria COXIII/ND2 genes) and also in mouse colitis induced by dextran sulfate-sodium (DSS). We used a mass spectometry approach to detect free plasma mitochondrial formylated peptides. Furthermore, we examined for mitochondrial damage using electron microscopy (EM) and TLR9 expression, the target for mtDNA, in human intestinal IBD mucosa.
Results
Plasma mtDNA levels were increased in UC and CD (both P < 0.0001) compared with non-IBD controls. These levels were significantly correlated to blood (C-reactive protein, albumin, white cell count), clinical and endoscopic markers of severity, and disease activity. In active UC, we identified 5 mitochondrial formylated peptides (the most abundant being fMMYALF with known chemoattractant function) in plasma. We observed mitochondrial damage in inflamed UC mucosa and significantly higher fecal MtDNA levels (vs non-IBD controls [P < 0.0001]), which supports gut mucosal mitochondrial DAMP release as the primary source. In parallel, plasma mtDNA levels increased during induction of acute DSS colitis and were associated with more severe colitis (P < 0.05). In active IBD, TLR9+ lamina propria inflammatory cells were significantly higher in UC and CD compared with controls (P < 0.05).
Conclusions
We present the first evidence to show that mtDNA is released during active IBD. MtDNA is a potential mechanistic biomarker, and our data point to mtDNA-TLR9 as a therapeutic target in IBD.
10.1093/ibd/izy095_video
izy095.video
5776747659001
Journal Article
Smarcad1 mediates microbiota-induced inflammation in mouse and coordinates gene expression in the intestinal epithelium
by
Miller, J. Ross
,
Mattiuz, Raphaël
,
Liebert, Anke
in
Animal Genetics and Genomics
,
Animals
,
Bioinformatics
2020
Background
How intestinal epithelial cells interact with the microbiota and how this is regulated at the gene expression level are critical questions. Smarcad1 is a conserved chromatin remodeling factor with a poorly understood tissue function. As this factor is highly expressed in the stem and proliferative zones of the intestinal epithelium, we explore its role in this tissue.
Results
Specific deletion of
Smarcad1
in the mouse intestinal epithelium leads to colitis resistance and substantial changes in gene expression, including a striking increase of expression of several genes linked to innate immunity. Absence of Smarcad1 leads to changes in chromatin accessibility and significant changes in histone H3K9me3 over many sites, including genes that are differentially regulated upon
Smarcad1
deletion. We identify candidate members of the gut microbiome that elicit a Smarcad1-dependent colitis response, including members of the poorly understood TM7 phylum.
Conclusions
Our study sheds light onto the role of the chromatin remodeling machinery in intestinal epithelial cells in the colitis response and shows how a highly conserved chromatin remodeling factor has a distinct role in anti-microbial defense. This work highlights the importance of the intestinal epithelium in the colitis response and the potential of microbial species as pharmacological and probiotic targets in the context of inflammatory diseases.
Journal Article
Genetic architecture of the inflammatory bowel diseases across East Asian and European ancestries
2023
Inflammatory bowel diseases (IBDs) are chronic disorders of the gastrointestinal tract with the following two subtypes: Crohn’s disease (CD) and ulcerative colitis (UC). To date, most IBD genetic associations were derived from individuals of European (EUR) ancestries. Here we report the largest IBD study of individuals of East Asian (EAS) ancestries, including 14,393 cases and 15,456 controls. We found 80 IBD loci in EAS alone and 320 when meta-analyzed with ~370,000 EUR individuals (~30,000 cases), among which 81 are new. EAS-enriched coding variants implicate many new IBD genes, including
ADAP1
and
GIT2
. Although IBD genetic effects are generally consistent across ancestries, genetics underlying CD appears more ancestry dependent than UC, driven by allele frequency (
NOD2
) and effect (
TNFSF15
). We extended the IBD polygenic risk score (PRS) by incorporating both ancestries, greatly improving its accuracy and highlighting the importance of diversity for the equitable deployment of PRS.
Genome-wide association analyses across individuals of East Asian and European ancestries identify new risk loci for inflammatory bowel diseases. A polygenic risk score derived from the combined datasets shows improved prediction accuracy.
Journal Article
Distinct colitis-associated macrophages drive NOD2-dependent bacterial sensing and gut homeostasis
by
Mullick, Madhubanti
,
Ibeawuchi, Stella-Rita C.
,
Carpio-Perkins, Kennith
in
Animals
,
Colitis - genetics
,
Colitis - immunology
2025
Single-cell studies have revealed that intestinal macrophages maintain gut homeostasis through the balanced actions of reactive (inflammatory) and tolerant (noninflammatory) subpopulations. How such balance is impaired in inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), remains unresolved. Here, we define colon-specific macrophage states and reveal the critical role of noninflammatory colon-associated macrophages (niColAMs) in IBD recovery. Through trans-scale analyses-integrating computational transcriptomics, proteomics, and in vivo interventional studies-we identified GIV (CCDC88A) as a key regulator of niColAMs. GIV emerged as the top-ranked gene in niColAMs that physically and functionally interacts with NOD2, an innate immune sensor implicated in CD and UC. Myeloid-specific GIV depletion exacerbates infectious colitis, prolongs disease, and abolishes the protective effects of the NOD2 ligand muramyl dipeptide in colitis and sepsis models. Mechanistically, GIV's C-terminus binds the terminal leucine-rich repeat 10 (LRR 10) of NOD2 and is required for NOD2 to dampen inflammation and clear microbes. The CD-associated 1007fs NOD2 variant, which lacks LRR 10, cannot bind GIV, which provides critical insights into how this clinically relevant variant impairs microbial sensing and clearance. These findings illuminate a critical GIV•NOD2 axis essential for gut homeostasis and highlight its disruption as a driver of dysbiosis and inflammation in IBD.
Journal Article
Peripheral Opioid Receptor Blockade Enhances Epithelial Damage in Piroxicam-Accelerated Colitis in IL-10-Deficient Mice
by
Deraison, Céline
,
Dietrich, Gilles
,
Saoudi, Abdelhadi
in
Analgesics
,
Animals
,
Anti-Inflammatory Agents - pharmacology
2021
Mucosal CD4+ T lymphocytes display a potent opioid-mediated analgesic activity in interleukin (IL)-10 knockout mouse model of inflammatory bowel diseases (IBD). Considering that endogenous opioids may also exhibit anti-inflammatory activities in the periphery, we examined the consequences of a peripheral opioid receptor blockade by naloxone-methiodide, a general opioid receptor antagonist unable to cross the blood–brain barrier, on the development of piroxicam-accelerated colitis in IL-10-deficient (IL-10-/-) mice. Here, we show that IL-10-deficient mice treated with piroxicam exhibited significant alterations of the intestinal barrier function, including permeability, inflammation-related bioactive lipid mediators, and mucosal CD4+ T lymphocyte subsets. Opioid receptor antagonization in the periphery had virtually no effect on colitis severity but significantly worsened epithelial cell apoptosis and intestinal permeability. Thus, although the endogenous opioid tone is not sufficient to reduce the severity of colitis significantly, it substantially contributes to the protection of the physical integrity of the epithelial barrier.
Journal Article
Lymphocytic colitis can be transcriptionally divided into channelopathic and inflammatory lymphocytic colitis
by
Münch, Andreas
,
Montague, Julia
,
Escudero‐Hernández, Celia
in
Adult
,
Case-Control Studies
,
channelopathic lymphocytic colitis
2024
Background
The pathobiology of the non‐destructive inflammatory bowel disease (IBD) lymphocytic colitis (LC) is poorly understood. We aimed to define an LC‐specific mucosal transcriptome to gain insight into LC pathology, identify unique genomic signatures, and uncover potentially druggable disease pathways.
Methods
We performed bulk RNA‐sequencing of LC and collagenous colitis (CC) colonic mucosa from patients with active disease, and healthy controls (n = 4–10 per cohort). Differential gene expression was analyzed by gene‐set enrichment and deconvolution analyses to identify pathologically relevant pathways and cells, respectively, altered in LC. Key findings were validated using reverse transcription quantitative PCR and/or immunohistochemistry. Finally, we compared our data with a previous cohort of ulcerative colitis and Crohn's disease patients (n = 4 per group) to distinguish non‐destructive from classic IBD.
Results
LC can be subdivided into channelopathic LC, which is governed by organic acid and ion transport dysregulation, and inflammatory LC, which is driven by microbial immune responses. Inflammatory LC displays an innate and adaptive immunity that is limited compared to CC and classic IBD. Conversely, we noted a distinct induction of regulatory non‐coding RNA species in inflammatory LC samples. Moreover, compared with CC, water channel and cell adhesion molecule gene expression decreased in channelopathic LC, whereas it was accentuated in inflammatory LC and associated with reduced intestinal epithelial cell proliferation.
Conclusions
We conclude that LC can be subdivided into channelopathic LC and inflammatory LC that could be pathomechanistically distinct subtypes despite their shared clinical presentation. Inflammatory LC exhibits a dampened immune response compared to CC and classic IBDs. Our results point to regulatory micro‐RNAs as a potential disease‐specific feature that may be amenable to therapeutic intervention.
Journal Article
Muc5ac Expression Protects the Colonic Barrier in Experimental Colitis
by
Olli, Kristine E
,
Goldberg, Matthew S
,
Robertson, Charles E
in
Analysis
,
Animals
,
Antibiotics
2020
Recent studies highlight the importance of mucins, in particular Muc2, in intestinal homeostasis. Our functional study demonstrates that an alternative secreted mucin, MUC5AC/Muc5ac, is induced in colitis to protect the colonic barrier by limiting host-bacterial interaction.AbstractBackgroundThe mucus gel layer (MGL) lining the colon is integral to exclusion of bacteria and maintaining intestinal homeostasis in health and disease. Some MGL defects allowing bacteria to directly contact the colonic surface are commonly observed in ulcerative colitis (UC). The major macromolecular component of the colonic MGL is the secreted gel-forming mucin MUC2, whose expression is essential for homeostasis in health. In UC, another gel-forming mucin, MUC5AC, is induced. In mice, Muc5ac is protective during intestinal helminth infection. Here we tested the expression and functional role of MUC5AC/Muc5ac in UC biopsies and murine colitis.MethodsWe measured MUC5AC/Muc5ac expression in UC biopsies and in dextran sulfate sodium (DSS) colitis. We performed DSS colitis in mice deficient in Muc5ac (Muc5ac-/-) to model the potential functional role of Muc5ac in colitis. To assess MGL integrity, we quantified bacterial-epithelial interaction and translocation to mesenteric lymph nodes. Antibiotic treatment and 16S rRNA gene sequencing were performed to directly investigate the role of bacteria in murine colitis.ResultsColonic MUC5AC/Muc5ac mRNA expression increased significantly in active UC and murine colitis. Muc5ac-/- mice experienced worsened injury and inflammation in DSS colitis compared with control mice. This result was associated with increased bacterial-epithelial contact and translocation to the mesenteric lymph nodes. However, no change in microbial abundance or community composition was noted. Antibiotic treatment normalized colitis severity in Muc5ac-/- mice to that of antibiotic-treated control mice.ConclusionsMUC5AC/Muc5ac induction in the acutely inflamed colon controls injury by reducing bacterial breach of the MGL.
Journal Article
IL-36α expression is elevated in ulcerative colitis and promotes colonic inflammation
2016
A role for the IL-36 family of cytokines has been identified in the pathogenesis of psoriasis. Although significant mechanistic overlap can exist between psoriasis and inflammatory bowel disease (IBD), to date there have been no reports investigating the IL-36 family in gastrointestinal inflammation. Here we demonstrate that expression levels of IL-36α are specifically elevated in the colonic mucosa of ulcerative colitis patients. This elevated expression is mirrored in the inflamed colonic mucosa of mice, wherein IL-36 receptor deficiency confirmed this pathway as a mediator of mucosal inflammation. Il36r−/− mice exhibited reduced disease severity in an acute DSS-induced model of colitis in association with decreased innate inflammatory cell infiltration to the colon lamina propria. Consistent with these data, infection with the enteropathogenic bacteria Citrobacter rodentium, resulted in reduced innate inflammatory cell recruitment and increased bacterial colonization in the colons of il36r−/− mice. Il36r−/− mice also exhibited altered T helper cell responses in this model, with enhanced Th17 and reduced Th1 responses, demonstrating that IL-36R signaling also regulates intestinal mucosal T-cell responses. These data identify a novel role for IL-36 signaling in colonic inflammation and indicate that the IL-36R pathway may represent a novel target for therapeutic intervention in IBD.
Journal Article
Epigenomic Profiling Positions ATF7 as a Core Regulator of Colonic Inflammation
by
Zhu, Liangru
,
Li, Jiamin
,
Zhang, Xiaopeng
in
Activating Transcription Factors - genetics
,
Activating Transcription Factors - metabolism
,
Analysis
2025
ABSTRACT
Mitochondrial dysfunction plays a central role in epithelial damage and persistent inflammation in ulcerative colitis (UC), but the transcriptional mechanisms that govern mitochondrial quality control in the intestinal epithelium remain poorly defined. Here, we identify Activating Transcription Factor 7 (ATF7) as a key regulator of mitophagy in colonic epithelial cells. Integrative transcriptomic and epigenomic analyses of patient‐derived mucosal samples revealed marked ATF7 downregulation and widespread activation of inflammatory pathways. Chromatin immunoprecipitation and luciferase reporter assays demonstrated that ATF7 directly binds to and activates the promoter of PINK1, a master regulator of mitophagy. Genetic ablation of ATF7 or PINK1 in human epithelial cells impaired mitophagy, disrupted mitochondrial membrane potential, and increased reactive oxygen species. In vivo, intestinal epithelial cell‐specific knockout of ATF7 or PINK1 exacerbated dextran sulfate sodium‐induced colitis, with greater epithelial injury, elevated cytokine production, and transcriptional activation of TNF, NF‐kappaB, and inflammatory bowel disease signalling pathways. These results establish ATF7 as a critical transcriptional regulator linking mitochondrial homeostasis to epithelial resilience in the inflamed colon.
Journal Article