Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
142 result(s) for "Colitis-Associated Neoplasms - metabolism"
Sort by:
Bifidobacterium breve -derived indole-3-lactic acid ameliorates colitis-associated tumorigenesis by directing the differentiation of immature colonic macrophages
To elucidate dynamics and functions in colonic macrophage subsets, and their regulation by ( ) and its associated metabolites in the initiation of colitis-associated colorectal cancer (CAC). Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to create a CAC model. The tumor-suppressive effect of and variations of macrophage subsets were evaluated. Intestinal macrophages were ablated to determine their role in the protective effects of . Efficacious molecules produced by were identified by non-targeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The molecular mechanism was further verified in murine bone marrow-derived macrophages (BMDMs), macrophages derived from human peripheral blood mononuclear cells (hPBMCs), and demonstrated in CAC mice. alleviated colitis symptoms, delayed colonic tumorigenesis, and promoted phenotypic differentiation of immature inflammatory macrophages into mature homeostatic macrophages. On the contrary, the ablation of intestinal macrophages largely annulled the protective effects of . Microbial analysis of colonic contents revealed the enrichment of probiotics and the depletion of potential pathogens following supplementation. Moreover, indole-3-lactic acid (ILA) was positively correlated with in CAC mice and highly enriched in the culture supernatant of . Also, the addition of ILA directly promoted AKT phosphorylation and restricted the pro-inflammatory response of murine BMDMs and macrophages derived from hPBMCs . The effects of ILA in murine BMDMs and macrophages derived from hPBMCs were abolished by the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the AKT inhibitor MK-2206. Furthermore, ILA could protect against tumorigenesis by regulating macrophage differentiation in CAC mice; the AhR antagonist largely abrogated the effects of and ILA in relieving colitis and tumorigenesis. -mediated tryptophan metabolism ameliorates the precancerous inflammatory intestinal milieu to inhibit tumorigenesis by directing the differentiation of immature colonic macrophages.
The role of intestinal macrophage polarization in colitis-associated colon cancer
Chronic inflammation of the intestine is a significant risk factor in the development of colorectal cancer. The emergence of colitis and colorectal cancer is a complex, multifactorial process involving chronic inflammation, immune regulation, and tumor microenvironment remodeling. Macrophages represent one of the most prevalent cells in the colorectal cancer microenvironment and play a pivotal role in maintaining intestinal health and the development of colitis-associated colon cancer (CAC). Macrophages are activated mainly in two ways and resulted in three phenotypes: classically activated macrophages (M1), alternatively activated macrophages (M2). The most characteristic of these cells are the pro-inflammatory M1 and anti-inflammatory M2 types, which play different roles at different stages of the disease. During chronic inflammation progresses to cancer, the proportion of M2 macrophages gradually increases. The M2 macrophages secrete cytokines such as IL-10 and TGF-β, which promote angiogenesis and matrix remodeling, and create the favorable conditions for cancer cell proliferation, infiltration, and migration. Therefore, macrophage polarization has a dual effect on the progression of colitis to CAC. The combination of immunotherapy with reprogrammed macrophages and anti-tumor drugs may provide an effective means for enhancing the therapeutic effect. It may represent a promising avenue for developing novel treatments for CAC. In this review, we focus on the process of intestinal macrophage polarization in CAC and the role of intestinal macrophage polarization in the progression of colitis to colon cancer, and review the immunotherapy targets and relevant drugs targeting macrophages in CAC.
Changes in the Expression of Genes Regulating the Response to Hypoxia, Inflammation, Cell Cycle, Apoptosis, and Epithelial Barrier Functioning during Colitis-Associated Colorectal Cancer Depend on Individual Hypoxia Tolerance
One of the factors contributing to colorectal cancer (CRC) development is inflammation, which is mostly hypoxia-associated. This study aimed to characterize the morphological and molecular biological features of colon tumors in mice that were tolerant and susceptible to hypoxia based on colitis-associated CRC (CAC). Hypoxia tolerance was assessed through a gasping time evaluation in a decompression chamber. One month later, the animals were experimentally modeled for colitis-associated CRC by intraperitoneal azoxymethane administration and three dextran sulfate sodium consumption cycles. The incidence of tumor development in the distal colon in the susceptible to hypoxia mice was two times higher and all tumors (100%) were represented by adenocarcinomas, while in the tolerant mice, only 14% were adenocarcinomas and 86% were glandular intraepithelial neoplasia. The tumor area assessed on serially stepped sections was statistically significantly higher in the susceptible animals. The number of macrophages, CD3−CD19+, CD3+CD4+, and NK cells in tumors did not differ between animals; however, the number of CD3+CD8+ and vimentin+ cells was higher in the susceptible mice. Changes in the expression of genes regulating the response to hypoxia, inflammation, cell cycle, apoptosis, and epithelial barrier functioning in tumors and the peritumoral area depended on the initial mouse’s hypoxia tolerance, which should be taken into account for new CAC diagnostics and treatment approaches development.
STAT3 Inhibition to Treat Ulcerative Colitis-Associated Colorectal Cancer
In patients with inflammatory bowel disease (IBD), colorectal cancer (CRC) occurs with 20-to-30-fold higher frequency, is more advanced at diagnosis, and has a worse prognosis than in the general population. To improve their treatment options, we determined if targeting STAT3 with TTI-101, a small-molecule STAT3 inhibitor, was beneficial in the azoxymethane (AOM)-disodium sulfate (DSS) mouse model of colitis-associated CRC. C57BL/6 mice received a single intraperitoneal injection of AOM followed by three cycles of 5% DSS in drinking water before receiving TTI-101 (50 mg/kg by oral gavage, OG, and daily) or vehicle for 28 days. TTI-101 treatment reduced adenoma numbers by 89% from 1.14 ± 1.07 in vehicle-treated mice to 0.13 ± 0.35 in TTI-101-treated mice (p ≤ 0.05, Kruskal–Wallis test). Levels of activated STAT3 (pY-STAT3) were increased 3.3-fold in the epithelium and stroma of dysplastic mucosa (147 ± 46; mean ± SD; and n = 4) vs. normal mucosa (45 ± 26; n = 7; and p ≤ 0.05, Kruskal–Wallis test) and were correlated with the adenoma number. TTI-101 was detected at pharmacologically relevant levels in the plasma and colons of TTI-101-treated AOM-DSS mice and was concentrated within colon tissue; plasma TTI-101 levels inversely correlated to pY-STAT3 levels. Importantly, TTI-101 normalized the colon transcriptome of AOM-DSS mice and reduced the expression of STAT3- and STAT1-upregulated genes associated with CRC oncogenesis. Thus, TTI-101 treatment may benefit IBD patients with CRC.
Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer
Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity, but its expression is increased in some cancers via stabilization with HSP90-associated chaperones. Here, we show that MIF stabilization is tumor-specific in an acute colitis-associated colorectal cancer (CRC) mouse model, leading to tumor-specific functions and selective therapeutic vulnerabilities. Therefore, we demonstrate that a Mif deletion reduced CRC tumor growth. Further, we define a dual role for MIF in CRC tumor progression. Mif deletion protects mice from inflammation-associated tumor initiation, confirming the action of MIF on host inflammatory pathways; however, macrophage recruitment, neoangiogenesis, and proliferative responses are reduced in Mif -deficient tumors once the tumors are established. Thus, during neoplastic transformation, the function of MIF switches from a proinflammatory cytokine to an angiogenesis promoting factor within our experimental model. Mechanistically, Mif -containing tumor cells regulate angiogenic gene expression via a MIF/CD74/MAPK axis in vitro. Clinical correlation studies of CRC patients show the shortest overall survival for patients with high MIF levels in combination with CD74 expression. Pharmacological inhibition of HSP90 to reduce MIF levels decreased tumor growth in vivo, and selectively reduced the growth of organoids derived from murine and human tumors without affecting organoids derived from healthy epithelial cells. Therefore, novel, clinically relevant Hsp90 inhibitors provide therapeutic selectivity by interfering with tumorigenic MIF in tumor epithelial cells but not in normal cells. Furthermore, Mif -depleted colonic tumor organoids showed growth defects compared to wild-type organoids and were less susceptible toward HSP90 inhibitor treatment. Our data support that tumor-specific stabilization of MIF promotes CRC progression and allows MIF to become a potential and selective therapeutic target in CRC.
The ubiquitin ligase Pellino1 targets STAT3 to regulate macrophage-mediated inflammation and tumor development
Receptor-mediated signaling could be modulated by ubiquitination of pathway intermediates, but the role of such modification in the pathogenesis of inflammation and inflammation-related cancer is lesser known. The ubiquitin ligase Pellino1 has been shown to modulate immune signals by enabling various immune cells to respond to their receptor signals effectively. Here, we show that Pellino1 levels are elevated in patients with colitis, patients with colitis-associated colon cancer (CAC), and murine models of these conditions. In a monocyte-specific Pellino1 knock-out mouse model, we find reduced macrophage migration and activation, leading to attenuated development of colitis and CAC in male mice. Mechanistically, Pellino1 targets STAT3 for lysine 63-mediated ubiquitination, resulting in pathogenic activation of STAT3 signaling. Taken together, our findings reveal a macrophage-specific ubiquitination signaling axis in colitis and CAC development and suggest that Pellino1 is a potential candidate for treating chronic inflammation and inflammation-related cancer. Ubiquitination is an important regulatory mechanism to enhance or inhibit the activity of signalling molecules in immunological processes. Here authors show that the ubiquitin ligase Pellino1 increases the activation of STAT3 in colitis and colitis-associated colon cancer, and these inflammatory conditions are mitigated upon monocyte-specific genomic deletion of Pellino1 in mice.
GPR120 prevents colorectal adenocarcinoma progression by sustaining the mucosal barrier integrity
GPR120 (encoded by FFAR4 gene) is a receptor for long chain fatty acids, activated by ω-3 Polyunsaturated Fatty Acids (PUFAs), and expressed in many cell types. Its role in the context of colorectal cancer (CRC) is still puzzling with many controversial evidences. Here, we explored the involvement of epithelial GPR120 in the CRC development. Both in vitro and in vivo experiments were conducted to mimic the conditional deletion of the receptor from gut epithelium. Intestinal permeability and integrity of mucus layer were assessed by using Evans blue dye and immunofluorescence for MUC-2 protein, respectively. Microbiota composition, presence of lipid mediators and short chain fatty acids were analyzed in the stools of conditional GPR120 and wild type (WT) mice. Incidence and grade of tumors were evaluated in all groups of mice before and after colitis-associated cancer. Finally, GPR120 expression was analyzed in 9 human normal tissues, 9 adenomas, and 17 primary adenocarcinomas. Our work for the first time highlights the role of the receptor in the progression of colorectal cancer. We observed that the loss of epithelial GPR120 in the gut results into increased intestinal permeability, microbiota translocation and dysbiosis, which turns into hyperproliferation of epithelial cells, likely through the activation of β -catenin signaling. Therefore, the loss of GPR120 represents an early event of CRC, but avoid its progression as invasive cancer. these results demonstrate that the epithelial GPR120 receptor is essential to maintain the mucosal barrier integrity and to prevent CRC developing. Therefore, our data pave the way to GPR120 as an useful marker for the phenotypic characterization of CRC lesions and as new potential target for CRC prevention.
Gut microbial and metabolomics profiles reveal the potential mechanism of fecal microbiota transplantation in modulating the progression of colitis-associated colorectal cancer in mice
Purpose Intestinal flora promotes the pathogenesis of colorectal cancer (CRC) through microorganisms and their metabolites. This study aimed to investigate the composition of intestinal flora in different stages of CRC progression and the effect of fecal microbiota transplantation (FMT) on CRC mice. Methods The fecal microbiome from healthy volunteers (HC), colorectal adenoma (CRA), inflammatory bowel disease (IBD), and CRC patients were analyzed by 16s rRNA gene sequencing. In an azoxymethane (AOM)/dextran-sulfate-sodium (DSS)-induced CRC mouse, the effect of FMT from HC, CRA, CRC, and IBD patients on CRC mice was assessed by histological analysis. Expression of inflammation- EMT-associated proteins and Wnt/β-catenin pathway were assessed using qRT-PCR and western blot. The ratio of the fecal microorganisms and metabolomics alteration after FMT were also assessed. Result Prevotella , Faecalibacterium , Phascolarctobacterium , Veillonella , Alistipes , Fusobacterium , Oscillibacter , Blautia , and Ruminococcus abundance was different among HC, IBD, CRC, and CRA patients. HC-FMT alleviated disease progression and inflammatory response in CRC mice, inhibited splenic T help (Th)1 and Th17 cell numbers, and suppressed the EMT and Wnt/β-catenin pathways in tumor tissues of CRC mice. IBD-FMT, CRA-FMT, and CRC-FMT played deleterious roles; the CRC-FMT mice exhibited the most malignant phenotype. Compared with the non-FMT CRC mice, Muribaculaceae abundance was lower after FMT, especially lowest in the IBD-FMT group; while Lactobacillus abundance was higher after FMT and especially high in HC-FMT. Akkermansia and Ileibacterium abundance increased after FMT-HC compared to other groups. Metabolite correlation analysis revealed that Muribaculaceae abundance was significantly correlated with metabolites such as Betaine, LysoPC, and Soyasaponin III. Lactobacillus abundance was positively correlated with Taurocholic acid 3-sulfate, and Ileibacterium abundance was positively correlated with Linoleoyl ethanolamide. Conclusion The different intestinal microbiota communities of HC, IBD, CRA, and CRC patients may be attributed to the different modulation effects of FMT on CRC mice. CRC-FMT promoted, while HC-FMT inhibited the progress of CRC. Increased linoleoyl ethanolamide levels and abundance of Muribaculaceae , Akkermansia , and Ileibacterium and reduced Fusobacterium might participate in inhibiting CRC initiation and development. This study demonstrated that FMT intervention could restore the intestinal microbiota and metabolomics of CRC mice, suggesting FMT as a potential strategy for CRC therapy.
Intestinal epithelial damage-derived mtDNA activates STING-IL12 axis in dendritic cells to promote colitis
The treatment of ulcerative colitis (UC) presents an ongoing clinical challenge. Emerging research has implicated that the cGAS-STING pathway promotes the progression of UC, but conflicting results have hindered the development of STING as a therapeutic target. In the current study, we aim to comprehensively elucidate the origins, downstream signaling and pathogenic roles of myeloid STING in colitis and colitis-associated carcinoma (CAC). mice were constructed for inducible myeloid-specific deletion of STING. RNA-sequencing, flow cytometry, and multiplex immunohistochemistry were employed to investigate immune responses in DSS-induced colitis or AOM/DSS-induced carcinogenesis. Colonic organoids, primary bone marrow derived macrophages and dendritic cells, and splenic T cells were used for studies. We observed that myeloid STING knockout in adult mice inhibited macrophage maturation, reduced DC cell activation, and suppressed pro-inflammatory Th1 and Th17 cells, thereby protecting against both acute and chronic colitis and CAC. However, myeloid STING deletion in neonatal or tumor-present mice exhibited impaired immune tolerance and anti-tumor immunity. Furthermore, we found that TFAM-associated mtDNA released from damaged colonic organoids, rather than bacterial products, activates STING in dendritic cells in an extracellular vesicle-independent yet endocytosis-dependent manner. Both IRF3 and NF-κB are required for STING-mediated expression of IL-12 family cytokines, promoting Th1 and Th17 differentiation and contributing to excessive inflammation in colitis. Detection of the TFAM-mtDNA complex from damaged intestinal epithelium by myeloid STING exacerbates colitis through IL-12 cytokines, providing new evidence to support the development of STING as a therapeutic target for UC and CAC.
CCL11 exacerbates colitis and inflammation-associated colon tumorigenesis
CCL11, also known as eotaxin-1, is described as an eosinophil chemoattractant, which has been implicated in allergic and Th2 inflammatory diseases. We have reported that CCL11 is significantly increased in the serum of inflammatory bowel disease (IBD) patients, colonic eosinophils are increased and correlate with tissue CCL11 levels in ulcerative colitis patients, and CCL11 is increased in dextran sulfate sodium (DSS)-induced murine colitis. Here, we show that CCL11 is involved in the pathogenesis of DSS-induced colitis and in colon tumorigenesis in the azoxymethane (AOM)-DSS model of colitis-associated carcinogenesis (CAC). Ccl11 −/− mice exposed to DSS then allowed to recover had significantly less body weight loss and a decrease in histologic injury versus wild-type (WT) mice. In the AOM-DSS model, Ccl11 −/− mice exhibited decreased colonic tumor number and burden, histologic injury, and colonic eosinophil infiltration versus WT mice. Ccl11 is expressed by both colonic epithelial and lamina propria immune cells. Studies in bone marrow chimera mice revealed that hematopoietic- and epithelial-cell-derived CCL11 were both important for tumorigenesis in the AOM-DSS model. These findings indicate that CCL11 is important in the regulation of colitis and associated carcinogenesis and thus anti-CCL11 antibodies may be useful for treatment and cancer chemoprevention in IBD.