Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Compact Muon Solenoid (CMS)"
Sort by:
Assessment of Two Advanced Aluminium-Based Metal Matrix Composites for Application to High Energy Physics Detectors
The Outer Tracker of the Compact Muon Solenoid (CMS), one of the large experiments at the CERN Large Hadron Collider, will consist of about 13,200 modules, each built up of two silicon sensors. The modules and support structures include thousands of parts that contribute to positioning and cooling the sensors during operation at −30 °C. These parts should be low mass while featuring high thermal conductivity, stiffness and strength. Their thermal expansion coefficient should match that of silicon to avoid deformations during cooling cycles. Due to their unique thermal and mechanical properties, aluminium-carbon fibre (Al/Cf) Metal Matrix Composites are the material of choice to produce such light and stable thermal management components for High Energy Physics detectors. For the CMS Outer Tracker, about 500,000 cm3 of Al/Cf raw material will be required to be produced through a reliable process to guarantee consistent properties throughout parts manufacturing. Two Al/Cf production routes are currently considered: liquid casting by gas-pressure infiltration and a powder metallurgy process based on continuous semi-liquid phase sintering. The dimensional stability of the resulting material is of paramount importance. Irreversible change of shape may be induced by moisture adsorption and the onset of galvanic corrosion at the discontinuous interfaces between Cf and Al. This paper presents the results of an extensive investigation through Computed Microtomography, direct microscopical investigations, analysis of the interfaces and metrology measurements aimed at comparing and interpreting the response to different environments of the respective products. The results obtained confirm the suitability of the two investigated Al/Cf MMCs for application to components of the CMS Outer Tracker, requiring tight geometrical control and microstructural stability over time. However, for PM parts sintered through the semi-liquid phase process, a multilayered protective noble metal coating is necessary the make them impervious to moisture, allowing dimensional stability to be guaranteed and the onset of corrosion phenomena to be avoided, while the product obtained by gas-pressure infiltration has shown less sensitive even to extreme temperature-humidity cycles and may be used uncoated.
Feasibility Studies of Charge Exchange Measurements in pp Collisions at the LHC
(1) Pions produced in the development of extended atmospheric cosmic ray air showers subsequently decay to muons. The measured yield of those muons is generally underestimated by current phenomenological models and event generators optimized for cosmic ray physics. The importance of those disagreements motivates the feasibility studies for testing these models at the Large Hadron Collider (LHC) energies, at the highest center-of-mass energies achievable in a laboratory. The interaction of a nucleus and a virtual pion created in a charge exchange reaction at the LHC is a similar process to those contributing to the development of air showers in case of cosmic rays. The crucial problem of such an analysis is the selection of charge exchange events with the highest possible efficiency and high purity from proton–proton collisions at the LHC. (2) For this we consider distributions of various measurable quantities given by event generators commonly used in cosmic ray physics. (3) We examine the expected distributions of energy deposited in different calorimeters of an LHC experiment. We consider the geometrical acceptance and energy resolution of the detectors at the Compact Muon Solenoid (CMS) experiment, as an example. We determine a working point cut from the various options for event selection, and compare signal and background predictions using different models for a representative simple observable, such as average transverse momentum or charge particle yield. (4) A set of event selection cuts along these considerations is proposed, with the aim of achieving optimal efficiency and purity.
Early physics results
For the past year, experiments at the Large Hadron Collider (LHC) have started exploring physics at the high-energy frontier. Thanks to the superb turn-on of the LHC, a rich harvest of initial physics results have already been obtained by the two general-purpose experiments A Toroidal LHC Apparatus (ATLAS) and the Compact Muon Solenoid (CMS), which are the subject of this report. The initial data have allowed a test, at the highest collision energies ever reached in a laboratory, of the Standard Model (SM) of elementary particles, and to make early searches Beyond the Standard Model (BSM). Significant results have already been obtained in the search for the Higgs boson, which would establish the postulated electro-weak symmetry breaking mechanism in the SM, as well as for BSM physics such as Supersymmetry (SUSY), heavy new particles, quark compositeness and others. The important, and successful, SM physics measurements are giving confidence that the experiments are in good shape for their journey into the uncharted territory of new physics anticipated at the LHC.
Compact Muon Solenoid Decade Perspective and Local Implications
The Compact Muon Solenoid CMS is one of the major detectors of the LHC Large Hadron Collider accelerator. The second, a competitive brother, is Atlas. The accelerator complex in CERN was shut down for two years, after two years of exploitation, and will resume its work in 2015. During this break, called long shutdown LS1 a number of complex components, including electronics and photonics, will be intensely refurbished. Not only the LHC itself but also the booster components and detectors. In particular, the beam luminosity will be doubled, as well as the colliding beam energy. This means tenfold increase in the integrated luminosity over a year to 250fb[-1]/y. Discovery potential will be increased. This potential will be used for subsequent two years, with essentially no breaks, till the LS2 in 2017. The paper presents an introduction to the research area of the LHC and chosen aspects of the CMS detector modernization. The Warsaw CMS Group is involved in CMS construction, commissioning, maintenance and refurbishment, in particular for algorithms and hardware of the muon trigger. The Group consists of members form the following local research institutions, academic and governmental: IFD-UW, NCBJ-´Swierk and ISEWEiTI- PW.