Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
843 result(s) for "Compatibilizers"
Sort by:
Enhancing PLA/PBAT blends properties with high epoxy-functional polymer as a compatibilizer
In this work, a novel functional polymer with an abundance of epoxy groups (SMG) was tested as a compatibilizer to improve the compatibility of polylactic acid/1,4-butanediol terpolymer (PLA/PBAT) blends. The effect of additive dosage on the morphology, crystallization, and mechanical properties of PLA/PBAT blends was thoroughly investigated. The results showed that as little as 0.3 wt% of SMG could significantly improve the processability, compatibility, and mechanical properties of PLA/PBAT blends. In addition, SMG can be effectively applied to different ratios of PLA/PBAT blends to improve compatibility through in-situ reactions, thereby improving the strength and toughness of the blends. This modification processing technology is expected to facilitate the development and industrialization of biodegradable plastic materials based on PLA/PBAT blends.
Janus particles as immiscible polymer blend compatibilizers: a review
Janus particles (JPs) have two distinct chemical and/or physical properties in one particle. This review is concerned with JPs’ applications in immiscible polymer blends. An overview of immiscible polymer blends and strategies used to compatibilize these blends will be given. We will then briefly review synthesis techniques used to produce JPs and finally comprehensively discuss the literature on JPs used to compatibilized immiscible polymer blends. Because JPs offer significant advantages over other compatibilization techniques as described in this review, we believe that this emerging area will see significant growth in the future.
Compatibilization of Immiscible PA6/PLA Nanocomposites Using Graphene Oxide and PTW Compatibilizer for High Thermal and Mechanical Applications
The aim of this work is synthesis a novel nanocomposite containing Polylactide (PLA) and polyamide 6 (PA6) reinforced with graphene oxide (GO) and poly ethylene-butyl acrylate-glycidyl methacrylate) (PTW) compatibilizer during solvent-based method. For this purpose, GO was added to the nanocomposite with 0.1, 0.3, 0.5, 0.7 and 1 phr. Morphology, rheology and mechanical properties of nanocomposites were studied with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and (DMTA) which showed rougher fracture surface due to the presence of compatibilizer and an increase in the amount of graphene oxide and better dispersion of graphene oxide. The results of experimental and theoretical studies of mechanical properties showed that increasing the concentration of graphene oxide in the presence of PTW improved the tensile strength, impact strength and tensile modulus in the PA6/PTW/PLA system. The study of rheological properties showed an increase in storage modulus and complex viscosity, which also confirmed the role of PTW compatibilizer in better GO dispersion. So, PA6/PTW/PLA is a good candidate for mechanical and high thermal applications.
In Situ Compatibilized Blends of PLA/PCL/CAB Melt-Blown Films with High Elongation: Investigation of Miscibility, Morphology, Crystallinity and Modelling
Ternary-blended, melt-blown films of polylactide (PLA), polycaprolactone (PCL) and cellulose acetate butyrate (CAB) were prepared from preliminary miscibility data using a rapid screening method and optical ternary phase diagram (presented as clear, translucent, and opaque regions) as a guide for the composition selection. The compositions that provided optically clear regions were selected for melt blending. The ternary (PLA/PCL/CAB) blends were first melt-extruded and then melt-blown to form films and characterized for their tensile properties, tensile fractured-surface morphology, miscibility, crystallinity, molecular weight and chemical structure. The results showed that the tensile elongation at the break (%elongation) of the ternary-blended, melt-blown films (85/5/10, 75/10/15, 60/15/25 of PLA/PCL/CAB) was substantially higher (>350%) than pure PLA (ca. 20%). The range of compositions in which a significant increase in %elongation was observed at 55–85% w/w PLA, 5–20% w/w PCL and 10–25% w/w CAB. Films with high %elongation all showed good interfacial interactions between the dispersed phase (PCL and CAB) and matrix (PLA) in FE-SEM and showed improvements in miscibility (higher intermolecular interaction and mixing) and a decrease in the glass transition temperature, when compared to the low %elongation films. The decrease in Mw and Mn and the formation of the new NMR peaks (1H NMR at 3.68–3.73 ppm and 13C NMR at 58.54 ppm) were observed in only the high %elongation films. These are expected to be in situ compatibilizers that are generated during the melt processing, mostly by chain scission. In addition, mathematical modelling was used to study the optimal ratio and cost-effectiveness of blends with optimised mechanical properties. These ternary-blended, melt-blown films have the potential for use in both packaging and medical devices with excellent mechanical performance as well as inherent economic and environmental capabilities.
Compatibilization of Starch/Synthetic Biodegradable Polymer Blends for Packaging Applications: A Review
The health and environmental concerns of the usage of non-biodegradable plastics have driven efforts to explore replacing them with renewable polymers. Although starch is a vital renewable polymer, poor water resistivity and thermo-mechanical properties have limited its applications. Recently, starch/synthetic biodegradable polymer blends have captured greater attention to replace inert plastic materials; the question of ‘immiscibility’ arises during the blend preparation due to the mixing of hydrophilic starch with hydrophobic polymers. The immiscibility issue between starch and synthetic polymers impacts the water absorption, thermo-mechanical properties, and chemical stability demanded by various engineering applications. Numerous studies have been carried out to eliminate the immiscibility issues of the different components in the polymer blends while enhancing the thermo-mechanical properties. Incorporating compatibilizers into the blend mixtures has significantly reduced the particle sizes of the dispersed phase while improving the interfacial adhesion between the starch and synthetic biodegradable polymer, leading to fine and homogeneous structures. Thus, Significant improvements in thermo-mechanical and barrier properties and water resistance can be observed in the compatibilized blends. This review provides an extensive discussion on the compatibilization processes of starch and petroleum-based polymer blends.
Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties
It is of significant concern that the buildup of non-biodegradable plastic waste in the environment may result in long-term issues with the environment, the economy and waste management. In this study, low-density polyethylene (LDPE) was compounded with different contents of poly(butylene succinate) (PBS) at 10–50 wt.%, to evaluate the potential of replacing commercial plastics with a biodegradable renewable polymer, PBS for packaging applications. The morphological, mechanical and thermal properties of the LDPE/PBS blends were examined in relation to the effect of polyethylene–graft–maleic anhydride (PE–g–MA) as a compatibilizer. LDPE/PBS/PE–g–MA blends were fabricated via the melt blending method using an internal mixer and then were compression molded into test samples. The presence of LDPE, PBS and PE–g–MA individually in the matrix for each blend presented physical interaction between the constituents, as shown by Fourier-transform infrared spectroscopy (FTIR). The morphology of LDPE/PBS/PE–g–MA blends showed improved compatibility and homogeneity between the LDPE matrix and PBS phase. Compatibilized LDPE/PBS blends showed an improvement in the tensile strength, with 5 phr of compatibilizer providing the optimal content. The thermal stability of LDPE/PBS blends decreased with higher PBS content and the thermal stability of compatibilized blends was higher in contrast to the uncompatibilized blends. Therefore, our research demonstrated that the partial substitution of LDPE with a biodegradable PBS and the incorporation of the PE–g–MA compatibilizer could develop an innovative blend with improved structural, mechanical and thermal properties.
Synthesis and Characterization of the Novel Nanocomposites Based on Graphene Oxide/PLLA/PEG-PPG/PLCL Hybrids for Mechanical and Biomedical Applications
In this research, the synthesis of new nanocomposites based on Poly (L-lactic acid)/ poly (L-lactide- ɛ-caprolactone) PLLA/PLCL with a ratio of 90/10 and different amounts of graphene oxide (GO) (0.1-1%) was put on the agenda. The poly (ethylene glycol)-block-poly (propylene glycol), PEG-PPG, as a compatibilizer was used in each compound to increase the compatibility of the two phases. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were applied to study the structure of the obtained samples. Also, morphology, mechanical properties, rheological behavior, thermal stability, dynamic mechanical thermal analysis (DMTA), contact angle, and hydro-catalytic degradation were investigated. The results showed that using the GO, and PEG-PPG compatibilizer significantly decreased the average diameter of the dispersed phase of PLCL in the PLLA matrix. In addition, with the increase of GO contents, the mechanical properties, thermal stability contact angle, storage modulus increased, but hydro-catalytic degradation decreased. The results of scanning electron microscope (SEM) and transmission electron microscopy (TEM) approved that the presence of PEG-PPG compatibilizer significantly affects the dispersion of GO in the PLLA/PLCL matrix. So, the synthesized nanocomposite is a good candidate for mechanical and biomedical applications.
Impact on summation of reduced graphene oxide and compatibilization efficacy of LLDPE-g-MA on mechanical, thermal, morphological, and rheological properties of LLDPE/EVA nanocomposites
This research work was carried out with the aim of obtaining the optimum combination of the novel linear low-density polyethylene/ethylene vinyl acetate (LLDPE/EVA)nanocomposites by incorporation reduced graphene oxide (rGO) as reinforcement andLLDPE-g-MA as compatibilizerwith the new solution method.Different samples were synthesized by various amounts of rGO from 0.1 phr to 1 phr, 80 phr LLDPE, 5 phrLLDPE-g-MA, and 20 phr EVA.Thermal, rheological, mechanical, and morphological properties were investigated. Results showed that the modulus, elongation-at-break, and tensile strength increased significantly with the increase of rGO content in the presence of LLDPE-g-MA. Transmission electron microscopy (TEM) images showed that LLDPE-g-MA can cause a better dispersion of rGO in the polymeric matrix by creating an interface between LLDPE, LLDPE-g-MA, and EVA. In addition, the field emission scanning electron microscopy (FESEM) images showed that with the increase in the amount of rGO, the particlediameter of the EVA dispersed phase decreased significantly, which is the result of the interactions between the carbonic nanofiller and the LLDPE-g-MA compatibilizer.
Polypropylene/Graphene Nanocomposites: Effects of GNP Loading and Compatibilizers on the Mechanical and Thermal Properties
In this research work, graphene nanoplatelets (GNP) were selected as alternative reinforcing nanofillers to enhance the properties of polypropylene (PP) using different compatibilizers called polypropylene grafted maleic anhydride (PP-g-MA) and ethylene-octene elastomer grafted maleic anhydride (POE-g-MA). A twin screw extruder was used to compound PP, GNP, and either the PP-g-MA or POE-g-MA compatibilizer. The effect of GNP loading on mechanical and thermal properties of neat PP was investigated. Furthermore, the influence and performance of different compatibilizers on the final properties, such as mechanical and thermal, were discussed and reported. Tensile, flexural, impact, melting temperature, crystallization temperature, and thermal stability were evaluated by using a universal testing system, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). For mechanical properties, it was found that increasing GNP content from 1 wt.% to 5 wt.% increased tensile strength of the neat PP up to 4 MPa. The influence of compatibilizers on the mechanical properties had been discussed and reported. For instance, the addition of PP-g-MA compatibilizer improved tensile strength of neat PP with GNP loading. However, the addition of compatibilizer POE-g-MA slightly decreased the tensile strength of neat PP. A similar trend of behavior was observed for flexural strength. For thermal properties, it was found that both GNP loading and compatibilizers have no significant influence on both crystallization and melting temperature of neat PP. For thermal stability, however, it was found that increasing the GNP loading had a significant influence on improving the thermal behavior of neat PP. Furthermore, the addition of compatibilizers into the PP/GNP nanocomposite had slightly improved the thermal stability of neat PP.
Investigation of Compatibility Mechanisms and Diffusion Behavior of Polymer SBS-Modified Asphalt Compatibilizer Using Molecular Dynamics Simulation
Compatibilizers play a critical role in resolving compatibility issues between styrene–butadiene–styrene (SBS) modifiers and asphalt systems. These additives enhance the uniform dispersion of SBS modifiers and stabilize their cross-linked network structure within the asphalt matrix. This study employed molecular dynamics (MD) simulations via Materials Studio (MS) to investigate the effects of a compatibilizer on compatibility mechanisms and diffusion behavior in SBS-modified asphalt (SBSMA). Model validation was conducted through density and glass transition temperature (Tg) analyses. The cohesive energy density (CED) and solubility parameters were quantified to assess the impact of compatibilizer dosage on system compatibility. Radial distribution function (RDF) and mean square displacement (MSD) analyses elucidated molecular diffusion dynamics. The results indicate that compatibilizers enhance cohesive energy density by 12.5%, suppress irregular intermolecular motion, and reduce system instability. The synergistic interaction between aromatic and saturated components in compatibilizers effectively disperses asphaltene aggregates and inhibits π–π stacking. Additionally, strong solubility interactions with hydrocarbon mixtures facilitate the diffusion of asphaltene gum molecules. These findings provide molecular-level insights for optimizing compatibilizer design in SBSMA applications.