Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,266 result(s) for "Compilers (Computer programs)"
Sort by:
Open source software in quantum computing
Open source software is becoming crucial in the design and testing of quantum algorithms. Many of the tools are backed by major commercial vendors with the goal to make it easier to develop quantum software: this mirrors how well-funded open machine learning frameworks enabled the development of complex models and their execution on equally complex hardware. We review a wide range of open source software for quantum computing, covering all stages of the quantum toolchain from quantum hardware interfaces through quantum compilers to implementations of quantum algorithms, as well as all quantum computing paradigms, including quantum annealing, and discrete and continuous-variable gate-model quantum computing. The evaluation of each project covers characteristics such as documentation, licence, the choice of programming language, compliance with norms of software engineering, and the culture of the project. We find that while the diversity of projects is mesmerizing, only a few attract external developers and even many commercially backed frameworks have shortcomings in software engineering. Based on these observations, we highlight the best practices that could foster a more active community around quantum computing software that welcomes newcomers to the field, but also ensures high-quality, well-documented code.
JavaScript Essentials for SAP ABAP Developers
Easily master JavaScript (JS) with this quick guide and develop mobile and desktop applications for SAP Fiori. The book equips ABAP/SAP developers with the essential topics to get started with JS. The focus of JavaScript Essentials for SAP ABAP Developers is on the parts of the JS language that are useful from the perspective of an ABAP developer. The book starts with a brief intro to HTML, the basics of JS, and how to create and run a simple JS program. It then dives into the details of the language, showing how to make simple programs. It covers loops in detail, mathematical operations, and string and regular expressions in JS, as well as a taste of functions, followed by objects and object-oriented programming in JavaScript.
Programming languages and compiler design for realistic quantum hardware
Quantum computing sits at an important inflection point. For years, high-level algorithms for quantum computers have shown considerable promise, and recent advances in quantum device fabrication offer hope of utility. A gap still exists, however, between the hardware size and reliability requirements of quantum computing algorithms and the physical machines foreseen within the next ten years. To bridge this gap, quantum computers require appropriate software to translate and optimize applications (toolflows) and abstraction layers. Given the stringent resource constraints in quantum computing, information passed between layers of software and implementations will differ markedly from in classical computing. Quantum toolflows must expose more physical details between layers, so the challenge is to find abstractions that expose key details while hiding enough complexity. To enable a quantum computer to solve practical problems more efficiently than classical computers, quantum programming languages and compilers are required to translate quantum algorithms into machine code; here the currently available software is reviewed.
Code generation with Roslyn
\"Learn how Roslyn's new code generation capability will let you write software that is more concise, runs faster, and is easier to maintain. You will learn from real-world business applications to create better software by letting the computer write its own code based on your business logic already defined in lookup tables. Code Generation with Rosyln is the first book to cover this new capability. You will learn how these techniques can be used to simplify systems integration so that if one system already defines business logic through lookup tables, you can integrate a new system and share business logic by allowing the new system to write its own business logic based on already existing table-based business logic. One of the many benefits you will discover is that Roslyn uses an innovative approach to compiler design, opening up the inner workings of the compiler process. You will learn how to see the syntax tree that Roslyn is building as it compiles your code. Additionally, you will learn to feed it your own syntax tree that you create on the fly.\"-- Provided by publisher
Evaluating defect prediction approaches: a benchmark and an extensive comparison
Reliably predicting software defects is one of the holy grails of software engineering. Researchers have devised and implemented a plethora of defect/bug prediction approaches varying in terms of accuracy, complexity and the input data they require. However, the absence of an established benchmark makes it hard, if not impossible, to compare approaches. We present a benchmark for defect prediction, in the form of a publicly available dataset consisting of several software systems, and provide an extensive comparison of well-known bug prediction approaches, together with novel approaches we devised. We evaluate the performance of the approaches using different performance indicators: classification of entities as defect-prone or not, ranking of the entities, with and without taking into account the effort to review an entity. We performed three sets of experiments aimed at (1) comparing the approaches across different systems, (2) testing whether the differences in performance are statistically significant, and (3) investigating the stability of approaches across different learners. Our results indicate that, while some approaches perform better than others in a statistically significant manner, external validity in defect prediction is still an open problem, as generalizing results to different contexts/learners proved to be a partially unsuccessful endeavor.
Practical TLA+ : planning driven development
Learn how to design complex, correct programs and fix problems before writing a single line of code. This book is a practical, comprehensive resource on TLA+ programming with rich, complex examples. Practical TLA+ shows you how to use TLA+ to specify a complex system and test the design itself for bugs. You'll learn how even a short TLA+ spec can find critical bugs. Start by getting your feet wet with an example of TLA+ used in a bank transfer system, to see how it helps you design, test, and build a better application. Then, get some fundamentals of TLA+ operators, logic, functions, PlusCal, models, and concurrency. Along the way you will discover how to organize your blueprints and how to specify distributed systems and eventual consistency. Finally, you'll put what you learn into practice with some working case study applications, applying TLA+ to a wide variety of practical problems: from algorithm performance and data structures to business code and MapReduce. After reading and using this book, you'll have what you need to get started with TLA+ and how to use it in your mission-critical applications. What You'll LearnRead and write TLA+ specificationsCheck specs for broken invariants, race conditions, and liveness bugsDesign concurrency and distributed systemsLearn how TLA+ can help you with your day-to-day production workWho This Book Is ForThose with programming experience who are new to design and to TLA+.
Challenges and practices in aligning requirements with verification and validation: a case study of six companies
Weak alignment of requirements engineering (RE) with verification and validation (VV) may lead to problems in delivering the required products in time with the right quality. For example, weak communication of requirements changes to testers may result in lack of verification of new requirements and incorrect verification of old invalid requirements, leading to software quality problems, wasted effort and delays. However, despite the serious implications of weak alignment research and practice both tend to focus on one or the other of RE or VV rather than on the alignment of the two. We have performed a multi-unit case study to gain insight into issues around aligning RE and VV by interviewing 30 practitioners from 6 software developing companies, involving 10 researchers in a flexible research process for case studies. The results describe current industry challenges and practices in aligning RE with VV, ranging from quality of the individual RE and VV activities, through tracing and tools, to change control and sharing a common understanding at strategy, goal and design level. The study identified that human aspects are central, i.e. cooperation and communication, and that requirements engineering practices are a critical basis for alignment. Further, the size of an organisation and its motivation for applying alignment practices, e.g. external enforcement of traceability, are variation factors that play a key role in achieving alignment. Our results provide a strategic roadmap for practitioners improvement work to address alignment challenges. Furthermore, the study provides a foundation for continued research to improve the alignment of RE with VV.