Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
392 result(s) for "Compulsive Behavior - genetics"
Sort by:
Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes
Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 ( Gad1 ) and glutamic acid decarboxylase 2 ( Gad2 ) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes. The GABAergic system in Rett syndrome Rett syndrome, a neurodevelopmental disorder with autistic features, is caused by mutations in the methyl-CpG-binding protein 2 gene ( MECP2 ). A number of mouse models with full and cell-type specific deletions of Mecp2 have been generated, but show only a subset of the signs of Rett syndrome. Now Huda Zoghbi and colleagues report that mice with selective deletion of MeCP2 in GABAergic neurons show not only impaired GABAergic function, but capitulate many of the key features of Rett syndrome. The finding that disturbance of inhibitory neurons causes a variety of neuropsychiatric phenotypes suggests that the GABAergic system may be a promising target for therapeutic intervention. Mutations in the methyl-CpG-binding protein 2 (MeCP2) gene cause Rett syndrome, a neurodevelopmental disorder with features of autism. Multiple mouse models of MeCP2 have been generated, but show only a subset of the symptoms of Rett syndrome. These authors find that mice with selective deletion of MeCP2 in GABA-mediated neurons show not only impaired GABA-mediated function, but capitulate multiple key features of Rett, further suggesting a role of inhibitory function in neuropsychiatric disease.
New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity
Impulsivity and compulsivity represent useful conceptualizations that involve dissociable cognitive functions, which are mediated by neuroanatomically and neurochemically distinct components of cortico-subcortical circuitry. The constructs were historically viewed as diametrically opposed, with impulsivity being associated with risk-seeking and compulsivity with harm-avoidance. However, they are increasingly recognized to be linked by shared neuropsychological mechanisms involving dysfunctional inhibition of thoughts and behaviors. In this article, we selectively review new developments in the investigation of the neurocognition of impulsivity and compulsivity in humans, in order to advance our understanding of the pathophysiology of impulsive, compulsive, and addictive disorders and indicate new directions for research.
Probing Compulsive and Impulsive Behaviors, from Animal Models to Endophenotypes: A Narrative Review
Failures in cortical control of fronto-striatal neural circuits may underpin impulsive and compulsive acts. In this narrative review, we explore these behaviors from the perspective of neural processes and consider how these behaviors and neural processes contribute to mental disorders such as obsessive–compulsive disorder (OCD), obsessive–compulsive personality disorder, and impulse-control disorders such as trichotillomania and pathological gambling. We present findings from a broad range of data, comprising translational and human endophenotypes research and clinical treatment trials, focussing on the parallel, functionally segregated, cortico-striatal neural projections, from orbitofrontal cortex (OFC) to medial striatum (caudate nucleus), proposed to drive compulsive activity, and from the anterior cingulate/ventromedial prefrontal cortex to the ventral striatum (nucleus accumbens shell), proposed to drive impulsive activity, and the interaction between them. We suggest that impulsivity and compulsivity each seem to be multidimensional. Impulsive or compulsive behaviors are mediated by overlapping as well as distinct neural substrates. Trichotillomania may stand apart as a disorder of motor-impulse control, whereas pathological gambling involves abnormal ventral reward circuitry that identifies it more closely with substance addiction. OCD shows motor impulsivity and compulsivity, probably mediated through disruption of OFC-caudate circuitry, as well as other frontal, cingulate, and parietal connections. Serotonin and dopamine interact across these circuits to modulate aspects of both impulsive and compulsive responding and as yet unidentified brain-based systems may also have important functions. Targeted application of neurocognitive tasks, receptor-specific neurochemical probes, and brain systems neuroimaging techniques have potential for future research in this field.
Pathological Overeating: Emerging Evidence for a Compulsivity Construct
Compulsive eating behavior is a transdiagnostic construct that is characteristic of medical and psychiatric conditions such as forms of obesity and eating disorders. Although feeding research is moving toward a better understanding of the proposed addictive properties of food, the components and the mechanisms contributing to compulsive eating are not yet clearly defined or understood. Current understanding highlights three elements of compulsive behavior as it applies to pathological overeating: (1) habitual overeating; (2) overeating to relieve a negative emotional state; and (3) overeating despite aversive consequences. These elements emerge through mechanisms involving pathological habit formation through an aberrant learning process, the emergence of a negative emotional state, and dysfunctions in behavioral control. Dysfunctions in systems within neurocircuitries that comprise the basal ganglia, the extended amygdala, and the prefrontal cortex result in compulsive eating behaviors. Here, we present evidence to relate compulsive eating behavior and addiction and to characterize their underlying neurobiological mechanisms. A major need to improve understanding of compulsive eating through the integration of complex motivational, emotional, and cognitive constructs is warranted.
Shank3 mutant mice display autistic-like behaviours and striatal dysfunction
Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are poorly understood. SHANK3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for the development of 22q13 deletion syndrome (Phelan–McDermid syndrome) and other non-syndromic ASDs. Here we show that mice with Shank3 gene deletions exhibit self-injurious repetitive grooming and deficits in social interaction. Cellular, electrophysiological and biochemical analyses uncovered defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. Our findings demonstrate a critical role for SHANK3 in the normal development of neuronal connectivity and establish causality between a disruption in the Shank3 gene and the genesis of autistic-like behaviours in mice. Protein link to autism Genomic studies have identified numerous candidate genes for autism spectrum disorders, many of which encode synaptic proteins. One of the most promising is Shank3 , which codes for a key post-synaptic density protein at glutamatergic synapses. Peça et al . show that mice with Shank3 deletions display several features of autism, including social deficits, as well as abnormal striatal synapses and cortico-striatal circuitry. The findings demonstrate a crucial role for Shank3 in neuronal connectivity and provide a mechanism for its possible function in autistic-like behaviours.
Evidence for a Long-Lasting Compulsive Alcohol Seeking Phenotype in Rats
Excessive drinking to intoxication is the major behavioral characteristic of those addicted to alcohol but it is not the only one. Indeed, individuals addicted to alcohol also crave alcoholic beverages and spend time and put much effort into compulsively seeking alcohol, before eventually drinking large amounts. Unlike this excessive drinking, for which treatments exist, compulsive alcohol seeking is therefore another key feature of the persistence of alcohol addiction since it leads to relapse and for which there are few effective treatments. Here we provide novel evidence for the existence in rats of an individual vulnerability to switch from controlled to compulsive, punishment-resistant alcohol seeking. Alcohol-preferring rats given access to alcohol under an intermittent 2-bottle choice procedure to establish their alcohol-preferring phenotype were subsequently trained instrumentally to seek and take alcohol on a chained schedule of reinforcement. When stable seeking-taking performance had been established, completion of cycles of seeking responses resulted unpredictably either in punishment (0.45 mA foot-shock) or the opportunity to make a taking response for access to alcohol. Compulsive alcohol seeking, maintained in the face of the risk of punishment, emerged in only a subset of rats with a predisposition to prefer and drink alcohol, and was maintained for almost a year. We show further that a selective and potent μ-opioid receptor antagonist (GSK1521498) reduced both alcohol seeking and alcohol intake in compulsive and non-compulsive rats, indicating its therapeutic potential to promote abstinence and prevent relapse in individuals addicted to alcohol.
Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use
The authors show that the strengthening of excitatory inputs onto nucleus accumbens D2 medium spiny neurons (D2-MSNs) correlates with a weak motivation to self-administer cocaine in mice. Silencing or activating D2-MSNs enhances or suppresses the motivation to self-administer cocaine, respectively, suggesting that this pathway constrains compulsive drug seeking behaviors. A hallmark of addiction is the loss of control over drug intake, which is seen in only a fraction of those exposed to stimulant drugs such as cocaine. The cellular mechanisms underlying vulnerability or resistance to compulsive drug use remain unknown. We found that individual variability in the development of highly motivated and perseverative behavior toward cocaine is associated with synaptic plasticity in medium spiny neurons expressing dopamine D2 receptors (D2-MSNs) in the nucleus accumbens (NAc) of mice. Potentiation of glutamatergic inputs onto indirect pathway D2-MSNs was associated with resilience toward compulsive cocaine seeking. Inhibition of D2-MSNs using a chemicogenetic approach enhanced the motivation to obtain cocaine, whereas optogenetic activation of D2-MSNs suppressed cocaine self-administration. These results indicate that recruitment of D2-MSNs in NAc functions to restrain cocaine self-administration and serves as a natural protective mechanism in drug-exposed individuals.
Impaired instrumental reversal learning is associated with increased medial prefrontal cortex activity in Sapap3 knockout mouse model of compulsive behavior
Convergent functional neuroimaging findings implicate hyperactivity across the prefrontal cortex (PFC) and striatum in the neuropathology of obsessive compulsive disorder (OCD). The impact of cortico-striatal circuit hyperactivity on executive functions subserved by these circuits is unclear, because impaired recruitment of PFC has also been observed in OCD patients during paradigms assessing cognitive flexibility. To investigate the relationship between cortico-striatal circuit disturbances and cognitive functioning relevant to OCD, Sapap3 knockout mice (KOs) and littermate controls were tested in an instrumental reversal-learning paradigm to assess cognitive flexibility. Cortical and striatal activation associated with reversal learning was assessed via quantitative analysis of expression of the immediate early gene cFos and generalized linear mixed-effects models. Sapap3-KOs displayed heterogeneous reversal-learning performance, with almost half (n = 13/28) failing to acquire the reversed contingency, while the other 15/28 had similar acquisition as controls. Notably, reversal impairments were not correlated with compulsive grooming severity. cFos analysis revealed that reversal performance declined as medial PFC (mPFC) activity increased in Sapap3-KOs. No such relationship was observed in controls. Our studies are among the first to describe cognitive impairments in a transgenic OCD-relevant model, and demonstrate pronounced heterogeneity among Sapap3-KOs. These findings suggest that increased neural activity in mPFC is associated with impaired reversal learning in Sapap3-KOs, providing a likely neural basis for this observed heterogeneity. The Sapap3-KO model is thus a useful tool for future mechanistic studies to determine how mPFC hyperactivity contributes to OCD-relevant cognitive dysfunction.
MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212
The authors implicate the transcriptional repressor methyl CpG–binding protein MeCP2 in cocaine addiction. They report that MeCP2 regulates cocaine intake through microRNA-212 to control cocaine's effects on strital BDNF levels. The X-linked transcriptional repressor methyl CpG binding protein 2 (MeCP2), known for its role in the neurodevelopmental disorder Rett syndrome, is emerging as an important regulator of neuroplasticity in postmitotic neurons. Cocaine addiction is commonly viewed as a disorder of neuroplasticity, but the potential involvement of MeCP2 has not been explored. Here we identify a key role for MeCP2 in the dorsal striatum in the escalating cocaine intake seen in rats with extended access to the drug, a process that mimics the increasingly uncontrolled cocaine use seen in addicted humans. MeCP2 regulates cocaine intake through homeostatic interactions with microRNA-212 (miR-212) to control the effects of cocaine on striatal brain-derived neurotrophic factor (BDNF) levels. These data suggest that homeostatic interactions between MeCP2 and miR-212 in dorsal striatum may be important in regulating vulnerability to cocaine addiction.
Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive–like behaviors in mice
Individuals with obsessive-compulsive disorder (OCD) perform obsessive repetitive actions. Shahin Rafii and his colleagues show that mice lacking the gene Slitrk5 show OCD-like behavioral phenotypes and have deficits in corticostriatal communication in the brain. Obsessive-compulsive disorder (OCD) is a common psychiatric disorder defined by the presence of obsessive thoughts and repetitive compulsive actions, and it often encompasses anxiety and depressive symptoms 1 , 2 . Recently, the corticostriatal circuitry has been implicated in the pathogenesis of OCD 3 , 4 . However, the etiology, pathophysiology and molecular basis of OCD remain unknown. Several studies indicate that the pathogenesis of OCD has a genetic component 5 , 6 , 7 , 8 . Here we demonstrate that loss of a neuron-specific transmembrane protein, SLIT and NTRK-like protein-5 (Slitrk5), leads to OCD-like behaviors in mice, which manifests as excessive self-grooming and increased anxiety-like behaviors, and is alleviated by the selective serotonin reuptake inhibitor fluoxetine. Slitrk5 −/− mice show selective overactivation of the orbitofrontal cortex, abnormalities in striatal anatomy and cell morphology and alterations in glutamate receptor composition, which contribute to deficient corticostriatal neurotransmission. Thus, our studies identify Slitrk5 as an essential molecule at corticostriatal synapses and provide a new mouse model of OCD-like behaviors.