Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
69,904 result(s) for "Computational Intelligence."
Sort by:
Swarm intelligence and bio-inspired computation : theory and applications
Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades.Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase.
The Atlas of AI
The hidden costs of artificial intelligence, from natural resources and labor to privacy and freedom What happens when artificial intelligence saturates political life and depletes the planet? How is AI shaping our understanding of ourselves and our societies? In this book Kate Crawford reveals how this planetary network is fueling a shift toward undemocratic governance and increased inequality. Drawing on more than a decade of research, award-winning science, and technology, Crawford reveals how AI is a technology of extraction: from the energy and minerals needed to build and sustain its infrastructure, to the exploited workers behind \"automated\" services, to the data AI collects from us. Rather than taking a narrow focus on code and algorithms, Crawford offers us a political and a material perspective on what it takes to make artificial intelligence and where it goes wrong. While technical systems present a veneer of objectivity, they are always systems of power. This is an urgent account of what is at stake as technology companies use artificial intelligence to reshape the world.
Novel Developments in Computational Intelligence Systems and Their Applications in Multidisciplinary Areas
This book covers novel research based on various computational intelligence topics, including deep learning, artificial intelligence, machine learning, neural networks, healthcare, solutions to various problems using fuzzy systems and their applications in cryptography, assignment problems, transportation problems, cloud computing, etc. The goal of writing this book is to promote advances in the field of computational intelligence systems and to aid in the dissemination of results concerning recent applications in the areas of computational intelligence system-based applications, its allied branches like artificial intelligence, deep learning, cloud computing, fuzzy system, etc... among working professionals, researchers, and educators. This book will be useful for Data Scientists, web developers, cryptographers, medical researchers, engineers, researchers, and graduate level students in computer science, data science, operations research, and mathematics. It provides novel applications as well as new theoretical developments required to understand current computational intelligence topics such as deep learning, machine learning, fuzzy based systems, and various other relevant fields. Graduate and postgraduate Computer Science, Engineering, Information Technology and Mathematics students, as well as teachers, can use it as a reference book because they can find applications that can be used to clarify specific concepts.
A hybrid method for fire detection based on spatial and temporal patterns
Fire detection is a vital task for social, economic and environmental reasons. Early identification of fire outbreaks is crucial in order to limit the damage that will be sustained. In open areas, this task is typically performed by humans, e.g., security guards, who are responsible for watching out for possible occurrences. However, people may get distracted, or may not have enough eyesight, which can result in considerable delays in identifying a fire, after much damage has occurred. Thus, the idea of having machines to automatically detect fires has long been considered an interesting possibility. Over the years, different approaches for fire detection have been developed using computer vision. Currently, the most promising ones are based on convolutional neural networks (CNNs). However, smoke and fire, the main visual indicators of wildfires, present additional difficulties for the vast majority of such learning systems. Both smoke and fire have a high intra-class variance, assuming different shapes, colors and textures, which makes the learning process more complicated than for well-defined objects. This work proposes an automatic fire detection method based on both spatial (visual) and temporal patterns. This hybrid method works in two stages: (i) detection of probable fire events by a CNN based on visual patterns (spatial processing) and (ii) analysis of the dynamics of these events over time (temporal processing). Experiments performed on our surveillance video database show that cascading these two stages can reduce the false positive rate with no significant impact either on the true positive rate or the processing time.
Human-AI Teaming
Although artificial intelligence (AI) has many potential benefits, it has also been shown to suffer from a number of challenges for successful performance in complex real-world environments such as military operations, including brittleness, perceptual limitations, hidden biases, and lack of a model of causation important for understanding and predicting future events. These limitations mean that AI will remain inadequate for operating on its own in many complex and novel situations for the foreseeable future, and that AI will need to be carefully managed by humans to achieve their desired utility. Human-AI Teaming: State-of-the-Art and Research Needs examines the factors that are relevant to the design and implementation of AI systems with respect to human operations. This report provides an overview of the state of research on human-AI teaming to determine gaps and future research priorities and explores critical human-systems integration issues for achieving optimal performance.