Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
149,834
result(s) for
"Computational biology"
Sort by:
MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis
by
Paci, Paola
,
Licursi, Valerio
,
Fiscon, Giulia
in
Algorithms
,
Bioinformatics
,
Bioinformatics tool
2019
Background
miRNAs regulate the expression of several genes with one miRNA able to target multiple genes and with one gene able to be simultaneously targeted by more than one miRNA. Therefore, it has become indispensable to shorten the long list of miRNA-target interactions to put in the spotlight in order to gain insight into understanding the regulatory mechanism orchestrated by miRNAs in various cellular processes. A reasonable solution is certainly to prioritize miRNA-target interactions to maximize the effectiveness of the downstream analysis.
Results
We propose a new and easy-to-use web tool MIENTURNET (MicroRNA ENrichment TURned NETwork) that receives in input a list of miRNAs or mRNAs and tackles the problem of prioritizing miRNA-target interactions by performing a statistical analysis followed by a fully featured network-based visualization and analysis. The statistics is used to assess the significance of an over-representation of miRNA-target interactions and then MIENTURNET filters based on the statistical significance associated with each miRNA-target interaction. In addition, the holistic approach of the network theory is used to infer possible evidences of miRNA regulation by capturing emergent properties of the miRNA-target regulatory network that would be not evident through a pairwise analysis of the individual components.
Conclusion
MIENTURNET offers the possibility to consistently perform both statistical and network-based analyses by using only a single tool leading to a more effective prioritization of the miRNA-target interactions. This has the potential to avoid researchers without computational and informatics skills to navigate multiple websites and thus to independently investigate miRNA activity in every cellular process of interest in an easy and at the same time exhaustive way thanks to the intuitive web interface. The web application along with a well-documented and comprehensive user guide are freely available at
http://userver.bio.uniroma1.it/apps/mienturnet/
without any login requirement.
Journal Article
Computational biology and chemistry
by
Behzadi, Payam, 1973- editor
,
Bernabò, Nicola, editor
in
Computational chemistry.
,
Cheminformatics.
,
Computational biology.
2020
The use of computers and software tools in biochemistry (biology) has led to a deep revolution in basic sciences and medicine. Bioinformatics and systems biology are the direct results of this revolution. With the involvement of computers, software tools, and internet services in scientific disciplines comprising biology and chemistry, new terms, technologies, and methodologies appeared and established. Bioinformatic software tools, versatile databases, and easy internet access resulted in the occurrence of computational biology and chemistry. Today, we have new types of surveys and laboratories including 'in silico studies' and 'dry labs' in which bioinformaticians conduct their investigations to gain invaluable outcomes. These features have led to 3-dimensioned illustrations of different molecules and complexes to get a better understanding of nature.
Modeling aspects of the language of life through transfer-learning protein sequences
by
Rost, Burkhard
,
Elnaggar, Ahmed
,
Nechaev, Dmitrii
in
Algorithms
,
Amino Acid Sequence
,
Amino acids
2019
Background
Predicting protein function and structure from sequence is one important challenge for computational biology. For 26 years, most state-of-the-art approaches combined machine learning and evolutionary information. However, for some applications retrieving related proteins is becoming too time-consuming. Additionally, evolutionary information is less powerful for small families, e.g. for proteins from the
Dark Proteome
. Both these problems are addressed by the new methodology introduced here.
Results
We introduced a novel way to represent protein sequences as continuous vectors (
embeddings
) by using the language model ELMo taken from natural language processing. By modeling protein sequences, ELMo effectively captured the biophysical properties of the language of life from unlabeled big data (UniRef50). We refer to these new embeddings as
SeqVec
(
Seq
uence-to-
Vec
tor) and demonstrate their effectiveness by training simple neural networks for two different tasks. At the per-residue level, secondary structure (Q3 = 79% ± 1, Q8 = 68% ± 1) and regions with intrinsic disorder (MCC = 0.59 ± 0.03) were predicted significantly better than through one-hot encoding or through Word2vec-like approaches. At the per-protein level, subcellular localization was predicted in ten classes (Q10 = 68% ± 1) and membrane-bound were distinguished from water-soluble proteins (Q2 = 87% ± 1). Although
SeqVec
embeddings generated the best predictions from single sequences, no solution improved over the best existing method using evolutionary information. Nevertheless, our approach improved over some popular methods using evolutionary information and for some proteins even did beat the best. Thus, they prove to condense the underlying principles of protein sequences. Overall, the important novelty is speed: where the lightning-fast
HHblits
needed on average about two minutes to generate the evolutionary information for a target protein,
SeqVec
created embeddings on average in 0.03 s. As this speed-up is independent of the size of growing sequence databases,
SeqVec
provides a highly scalable approach for the analysis of big data in proteomics, i.e. microbiome or metaproteome analysis.
Conclusion
Transfer-learning succeeded to extract information from unlabeled sequence databases relevant for various protein prediction tasks. SeqVec modeled the language of life, namely the principles underlying protein sequences better than any features suggested by textbooks and prediction methods. The exception is evolutionary information, however, that information is not available on the level of a single sequence.
Journal Article
iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data
2018
Background
RNA-seq is widely used for transcriptomic profiling, but the bioinformatics analysis of resultant data can be time-consuming and challenging, especially for biologists. We aim to streamline the bioinformatic analyses of gene-level data by developing a user-friendly, interactive web application for exploratory data analysis, differential expression, and pathway analysis.
Results
iDEP (integrated Differential Expression and Pathway analysis) seamlessly connects 63 R/Bioconductor packages, 2 web services, and comprehensive annotation and pathway databases for 220 plant and animal species. The workflow can be reproduced by downloading customized R code and related pathway files. As an example, we analyzed an RNA-Seq dataset of lung fibroblasts with Hoxa1 knockdown and revealed the possible roles of SP1 and E2F1 and their target genes, including microRNAs, in blocking G1/S transition. In another example, our analysis shows that in mouse B cells without functional p53, ionizing radiation activates the MYC pathway and its downstream genes involved in cell proliferation, ribosome biogenesis, and non-coding RNA metabolism. In wildtype B cells, radiation induces p53-mediated apoptosis and DNA repair while suppressing the target genes of MYC and E2F1, and leads to growth and cell cycle arrest. iDEP helps unveil the multifaceted functions of p53 and the possible involvement of several microRNAs such as miR-92a, miR-504, and miR-30a. In both examples, we validated known molecular pathways and generated novel, testable hypotheses.
Conclusions
Combining comprehensive analytic functionalities with massive annotation databases, iDEP (
http://ge-lab.org/idep/
) enables biologists to easily translate transcriptomic and proteomic data into actionable insights.
Journal Article
Comparing Families of Dynamic Causal Models
by
Daunizeau, Jean
,
Penny, Will D.
,
Rosa, Maria J.
in
Bayes Theorem
,
Bayesian analysis
,
Bayesian statistical decision theory
2010
Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This \"best model\" approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data.
Journal Article