Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
34,836
result(s) for
"Computer network protocols"
Sort by:
Interconnecting smart objects with IP : the next Internet
by
Dunkels, Adam
,
Vasseur, Jean-Philippe
in
Ad hoc networks (Computer networks)
,
Ambient intelligence
,
Automatic control
2010
Interconnecting Smart Objects with IP: The Next Internet explains why the Internet Protocol (IP) has become the protocol of choice for smart object networks. IP has successfully demonstrated the ability to interconnect billions of digital systems on the global Internet and in private IP networks. Once smart objects can be easily interconnected, a whole new class of smart object systems can begin to evolve. The book discusses how IP-based smart object networks are being designed and deployed. The book is organized into three parts. Part 1 demonstrates why the IP architecture is well suited to smart object networks, in contrast to non-IP based sensor network or other proprietary systems that interconnect to IP networks (e.g. the public Internet of private IP networks) via hard-to-manage and expensive multi-protocol translation gateways that scale poorly. Part 2 examines protocols and algorithms, including smart objects and the low power link layers technologies used in these networks. Part 3 describes the following smart object network applications: smart grid, industrial automation, smart cities and urban networks, home automation, building automation, structural health monitoring, and container tracking. Shows in detail how connecting smart objects impacts our lives with practical implementation examples and case studies Provides an in depth understanding of the technological and architectural aspects underlying smart objects technology Offers an in-depth examination of relevant IP protocols to build large scale smart object networks in support of a myriad of new services
An Energy Efficient Localization-Free Routing Protocol for Underwater Wireless Sensor Networks
2012
Recently, underwater wireless sensor networks (UWSNs) have attracted much research attention from both academia and industry, in order to explore the vast underwater environment. UWSNs have peculiar characteristics; that is, they have large propagation delay, high error rate, low bandwidth, and limited energy. Therefore, designing network/routing protocols for UWSNs is very challenging. Also, in UWSNs, improving the energy efficiency is one of the most important issues since the replacement of the batteries of underwater sensor nodes is very expensive due to the unpleasant underwater environment. In this paper, we therefore propose an energy efficient routing protocol, named (energy-efficient depth-based routing protocol) EEDBR for UWSNs. EEDBR utilizes the depth of sensor nodes for forwarding data packets. Furthermore, the residual energy of sensor nodes is also taken into account in order to improve the network lifetime. Based on the comprehensive simulation using NS2, we observe that EEDBR contributes to the performance improvements in terms of the network lifetime, energy consumption, and end-to-end delay. A previous version of this paper was accepted in AST-2011 conference.
Journal Article
Spectrum Sharing
by
Slock, Dirk T. M
,
Papadias, Constantinos B
,
Ratnarajah, Tharmalingam
in
Communication, Networking and Broadcast Technologies
,
Multiple access protocols (Computer network protocols)
,
Wireless communication systems
2020
Combines the latest trends in spectrum sharing, both from a research and a standards/regulation/experimental standpoint Written by noted professionals from academia, industry, and research labs, this unique book provides a comprehensive treatment of the principles and architectures for spectrum sharing in order to help with the existing and future spectrum crunch issues. It presents readers with the most current standardization trends, including CEPT / CEE, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP), and LTE/Wi-Fi aggregation (LWA), and offers substantial trials and experimental results, as well as system-level performance evaluation results. The book also includes a chapter focusing on spectrum policy reinforcement and another on the economics of spectrum sharing. Beginning with the historic form of cognitive radio, Spectrum Sharing: The Next Frontier in Wireless Networks continues with current standardized forms of spectrum sharing, and reviews all of the technical ingredients that may arise in spectrum sharing approaches. It also looks at policy and implementation aspects and ponders the future of the field. White spaces and data base-assisted spectrum sharing are discussed, as well as the licensed shared access approach and cooperative communication techniques. The book also covers reciprocity-based beam forming techniques for spectrum sharing in MIMO networks; resource allocation for shared spectrum networks; large scale wireless spectrum monitoring; and much more. Contains all the latest standardization trends, such as CEPT / ECC, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP) and LTE/Wi-Fi aggregation (LWA) Presents a number of emerging technologies for future spectrum sharing (collaborative sensing, cooperative communication, reciprocity-based beamforming, etc.), as well as novel spectrum sharing paradigms (e.g. in full duplex and radar systems) Includes substantial trials and experimental results, as well as system-level performance evaluation results Contains a dedicated chapter on spectrum policy reinforcement and one on the economics of spectrum sharing Edited by experts in the field, and featuring contributions by respected professionals in the field world wide Spectrum Sharing: The Next Frontier in Wireless Networks is highly recommended for graduate students and researchers working in the areas of wireless communications and signal processing engineering. It would also benefit radio communications engineers and practitioners.
Assessing a Methodology for Evaluating the Latency of IPv6 with SCHC Compression in LoRaWAN Deployments
by
Sisinni, Emiliano
,
Ferrari, Paolo
,
Bellagente, Paolo
in
Access control
,
Bandwidths
,
Communication
2023
The Internet of Things (IoT) approach relies on the use of the Internet Protocol (IP) as a pervasive network protocol. IP acts as a “glue” for interconnecting end devices (on the field side) and end users, leveraging on very diverse lower-level and upper-level protocols. The need for scalability would suggest the adoption of IPv6, but the large overhead and payloads do not match with the constraints dictated by common wireless solutions. For this reason, compression strategies have been proposed to avoid redundant information in the IPv6 header and to provide fragmentation and reassembly of long messages. For example, the Static Context Header Compression (SCHC) protocol has been recently referenced by the LoRa Alliance as a standard IPv6 compression scheme for LoRaWAN-based applications. In this way, IoT end points can seamlessly share an end-to-end IP link. However, implementation details are out of the specifications’ scope. For this reason, formal test procedures for comparing solutions from different providers are important. In this paper, a test method for assessing architectural delays of real-world deployments of SCHC-over-LoRaWAN implementations is presented. The original proposal includes a mapping phase, for identifying information flows, and a subsequent evaluation phase, in which flows are timestamped and time-related metrics are computed. The proposed strategy has been tested in different use cases involving LoRaWAN backends deployed all around the world. The feasibility of the proposed approach has been tested by measuring the end-to-end latency of IPv6 data in sample use cases, obtaining a delay of less than 1 s. However, the main result is the demonstration that the suggested methodology permits a comparison of the behavior of IPv6 with SCHC-over-LoRaWAN, allowing the optimization of choices and parameters during deployment and commissioning of both infrastructure components and software.
Journal Article
Replay-Attack Detection and Prevention Mechanism in Industry 4.0 Landscape for Secure SECS/GEM Communications
by
Manickam, Selvakumar
,
Al-Shareeda, Mahmood A.
,
Jaisan, Ashish
in
Algorithms
,
Automation
,
Communication
2022
Starting from the First Industrial Revolution to the current and Fourth Industrial Revolution (or Industry 4.0), various industrial machines are present in the market and manufacturing companies. As standardized protocols have become increasingly popular, more utilities are switching to Internet Protocol (IP)-based systems for wide-area communication. SECS/GEM is one of the standards that permit industries to collect information directly from the machines, either using RS323 or TCP/IP communication. TCP/IP communication is becoming more critical than ever, especially given our accelerated digital transformation and increasing reliance on communication technologies. The growth of IT is accelerating with cyberthreats as well. In contrast, security features in the SECS/GEM protocol may be neglected by some companies as it is only used in factories and not mostly used in the outside world. However, communication of SECS/GEM is highly susceptible to various cyberattacks. This paper analyzes the potential replay-attack cyberattacks that can occur on a SECS/GEM system. In replay attacks, this paper supposes an adversary that wants to damage an operation-based control system in an ongoing condition. The adversary has the ability to capture messages to watch and record their contents for a predetermined amount of time, record them, and then replay them while attacking in order to inject an exogenous control input undetected. The paper’s objectives are to prove that SECS/GEM communication is vulnerable to cyberattack and design a detection mechanism to protect SECS/GEM communications from replay attacks. The methodology implements a simulation of the replay-attack mechanism on SECS/GEM communication. The results indicate that the design mechanism detected replay attacks against SECS/GEM communications and successfully prevented them.
Journal Article