Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
15,128
result(s) for
"Computer numerical control"
Sort by:
Advanced customization in architectural design and construction
This book presents the state of the art in advanced customization within the sector of architectural design and construction, explaining important new technologies that are boosting design, product and process innovation and identifying the challenges to be confronted as we move toward a mass customization construction industry. Advanced machinery and software integration are discussed, as well as an overview of the manufacturing techniques offered through digital methods that are acquiring particular significance within the field of digital architecture. CNC machining, Robotic Fabrication, and Additive Manufacturing processes are all clearly explained, highlighting their ability to produce personalized architectural forms and unique construction components. Cutting-edge case studies in digitally fabricated architectural realizations are described and, looking towards the future, a new model of 100% customized architecture for design and construction is presented. The book is an excellent guide to the profound revolution taking place within the fields of architectural design and construction, characterized by computational tools, advanced fabrication means and custom-made high-performance architecture.
Quality characteristic association analysis of computer numerical control machine tool based on meta-action assembly unit
2016
As everyone knows, assembly quality plays a very important role in final product quality. Since computer numerical control machine tool is a large system with complicated structure and function, and there are complex association relationships among quality characteristics in assembly process, then it is difficult and inaccurate to analyze the whole computer numerical control machine tool quality characteristic association at one time. In this article, meta-action assembly unit is proposed as the basic analysis unit, of which quality characteristic association is studied to guarantee the whole computer numerical control machine tool assembly quality. First, based on “Function-Motion-Action” decomposition structure, the definitions of meta-action and meta-action assembly unit are introduced. Second, manufacturing process association and meta-action assembly unit quality characteristic association are discussed. Third, after understanding the definitions of information entropy and relative entropy, the concrete meta-action assembly unit quality characteristic association analysis steps based on relative entropy are described in detail. And finally, the lifting piston translation assembly unit of automatic pallet changer is taken as an example, the association degree between internal leakage and the influence factors of part quality characteristics and mate-relationships among them are calculated to figure out the most influential factors, showing the correctness and feasibility of this method.
Journal Article
Aluminum Waste in Road Pavement Subgrade
by
Govar, Hayder
,
Abdulnafaa, Mohammed D.
,
Cabalar, Ali Firat
in
Aluminum
,
arcilla
,
California bearing ratio
2020
This paper aims to investigate the use of spiral aluminum computer numerical control milling waste (CNC-W) in the construction of road pavement subgrade. The soil (CL) was mixed with CNC-W spirals with ratios of between 0% and 20%, and 5 percent increments by dry weight with different water contents. California Bearing Ratio (CBR), Unconfined Compressive Strength (UCS), and consolidation tests were conducted. The experimental results indicated that the inclusion of CNC-W spirals increased the CBR value of clay up to the 15% mixture ratio, then decreased it. Similarly, the UCS value of clay was increased to the same ratio, whilst the UCS was not able to be determined due to the failing of all specimens with a mixture ratio higher than 15%. The permeability and swelling values, as well as the consolidation characteristics of the mixtures, were defined. The swelling percentages decreased from 1,15 cm/sec to 0,81 cm/sec with an increment in the CNC-W spiral content. A reduction was observed in the coefficient of permeability (k) values up to 15% mixture ratio, whilst it remained constant with change in CNC-W spiral content with a 20% mixture ratio. Coefficient of consolidation demonstrated a similar pattern of behavior to the permeability changes
Journal Article
Benchmarking CNC Machine Tool Using Hybrid-Fuzzy Methodology: A Multi-Indices Decision Making (MCDM) Approach
by
Sahu, Anoop Kumar
,
Sahu, Nitin Kumar
,
Sahu, Atul Kumar
in
Benchmarking
,
Benchmarks
,
Business competition
2015
In today's era, managerial decision making has become a very momentous component due to the leverage of attention on achieving organizational goal i.e. enhancing effective utilization of input assets, satisfying customers' demand and minimizing loss (maximize profit). The evaluation of the most appropriate Computer Numerical Control (CNC) machine tool has become one of the key factors for sustaining the organization/manufacturing sectors/production units at competitive global market place. Productivity, precision and accuracy etc. are the most important issues behind adaptation/exploration of CNC machine tools. So, in such a cases, subjective indices are considered beside the objective indices and complexity of the CNC machine tool evaluation decision problems is solved via subjective assessments (judgment) of expert panel, also called the decision-making group. In this reporting, TOPSIS (technique for order preference by similarity to ideal solution) based Multi-Criteria Decision Making (MCDM) approach has fruitfully applied to emphasize the decision making scenario at the subjective information evaluation index (indices) platform. So, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) analytical methodology conjunction with Trapezoidal Fuzzy Number (TFN) has been explored for assessing and benchmarking the most preferable CNC machine tool from a group of preferred options/alternatives. Finally, an empirical case study has been carried out check the feasibility, efficiency and validity of proposed methodology and the benchmarking of preferred alternative machine tool has been derived in accordance with descending value of the ‘collective index'. Higher value of ‘collective index' reflects higher degree of performance extent.
Journal Article
Optimization strategy of computer numerical control machining process parameters in biomanufacturing mold
2024
With the rapid development of biomanufacturing technology in the medical and pharmaceutical fields, the demand for high-precision and high-quality molds has surged. When Computer numerical control (CNC) machining biomanufacturing molds, the optimization of process parameters becomes the key to improve efficiency and quality. The purpose of this study is to explore the optimization strategy of CNC machining process parameters to achieve the best surface quality, dimensional accuracy and machining efficiency. Through literature review, the spindle speed, feed speed and cutting depth are selected as the key parameters, and the multi-objective optimization model is constructed by response surface method, which is solved by genetic algorithm. The experiment shows that the process parameters of CNC system in mold manufacturing are cutting speed 100 (m/min), feed rate 0.2 (mm/rev) and cutting depth 0.5 (mm), which will effectively reduce the manufacturing cost, and effectively control the alarm times within 35 times in different processing equipment, greatly reduce the risk. The optimization strategy can significantly improve the surface quality and productivity of the mold and reduce the cost. The comparative analysis verifies the effectiveness of the method, which provides new theoretical and technical support for CNC machining in the field of biomanufacturing.
Journal Article
Fuzzy feedback scheduling algorithm based on central processing unit utilization for a software-based computer numerical control system
2010
Abstract
The tasks of a software-based computer numerical control (CNC) system are characterized by concurrency, hybridization, and correlation, which makes system implementation difficult. The uncertainty factors when running real-time tasks affect control performance by degrading manufacturing accuracy as a result of restrictions on system resources and processor use. To address the technical difficulty of embedded system implementation, a novel fuzzy feedback scheduling algorithm based on CPU utilization for a software-based CNC system is proposed herein. Time characteristics such as sampling jitter, input—output jitter, and non-schedulability are discussed, followed by quantification through simulations of the impact of time characteristics on manufacturing accuracy. On the basis of this research, fuzzy feedback scheduling based on the loop-up table method is designed for a software-based CNC system in order to reduce mismachining tolerance. The simulated results show that machining precision rises by an order of magnitude or more, proving that the presented algorithm is effective. Moreover, the algorithm is independent of task execution times and is easy to implement while incurring only a small overhead.
Journal Article
A quantitative approach to analyze carbon emissions of CNC-based machining systems
2015
With the growing concerns on global warming, much research attention has been focused on industrial activities which largely consume energy and emit carbon to the atmosphere. Low-carbon manufacturing, aiming to reduce carbon intensity and enhance resource utilization, is then emerging as a timely topic and spurs much research into a low carbon scenario. This paper proposes an analytical method of quantifying carbon emissions of a computer numerical control (CNC)-based machining system. In particular, the paper discusses the breakdown of the processes that contribute to the overall carbon emissions of a CNC-based machining system, such as electricity, cutting fluid, wear and tear of cutting tools, material consumption and disposal of chips, etc. The way of quantifying the amount of carbon emissions from individual processes are then analyzed. Finally, the proposed methodology is applied into two different machining cases, in which the impact of different machining parameters and different machining methods on carbon emissions in the CNC machining process are analyzed, respectively.
Journal Article
Comparing environmental impacts of additive manufacturing vs traditional machining via life-cycle assessment
by
Iribarne, Myles
,
Bayley, Cindy
,
Faludi, Jeremy
in
3-D printers
,
Additive manufacturing
,
Additives
2015
Purpose
– The purpose of this study is to compare the environmental impacts of two additive manufacturing machines to a traditional computer numerical control (CNC) milling machine to determine which method is the most sustainable.
Design/methodology/approach
– A life-cycle assessment (LCA) was performed, comparing a Haas VF0 CNC mill to two methods of additive manufacturing: a Dimension 1200BST FDM and an Objet Connex 350 “inkjet”/“polyjet”. The LCA’s functional unit was the manufacturing of two specific parts in acrylonitrile butadiene styrene (ABS) plastic or similar polymer, as required by the machines. The scope was cradle to grave, including embodied impacts, transportation, energy used during manufacturing, energy used while idling and in standby, material used in final parts, waste material generated, cutting fluid for CNC, and disposal. Several scenarios were considered, all scored using the ReCiPe Endpoint H and IMPACT 2002+ methodologies.
Findings
– Results showed that the sustainability of additive manufacturing vs CNC machining depends primarily on the per cent utilization of each machine. Higher utilization both reduces idling energy use and amortizes the embodied impacts of each machine. For both three-dimensional (3D) printers, electricity use is always the dominant impact, but for CNC at maximum utilization, material waste became dominant, and cutting fluid was roughly on par with electricity use. At both high and low utilization, the fused deposition modeling (FDM) machine had the lowest ecological impacts per part. The inkjet machine sometimes performed better and sometimes worse than CNC, depending on idle time/energy and on process parameters.
Research limitations/implications
– The study only compared additive manufacturing in plastic, and did not include other additive manufacturing technologies, such as selective laser sintering or stereolithography. It also does not include post-processing that might bring the surface finish of FDM parts up to the quality of inkjet or CNC parts.
Practical implications
– Designers and engineers seeking to minimize the environmental impacts of their prototypes should share high-utilization machines, and are advised to use FDM machines over CNC mills or polyjet machines if they provide sufficient quality of surface finish.
Originality/value
– This is the first paper quantitatively comparing the environmental impacts of additive manufacturing with traditional machining. It also provides a more comprehensive measurement of environmental impacts than most studies of either milling or additive manufacturing alone – it includes not merely CO2 emissions or waste but also acidification, eutrophication, human toxicity, ecotoxicity and other impact categories. Designers, engineers and job shop managers may use the results to guide sourcing or purchasing decisions related to rapid prototyping.
Journal Article
Architecture of the nuclear pore complex coat
by
Lin, Daniel H.
,
Kossiakoff, Anthony A.
,
Hoelz, André
in
Architecture
,
Coating
,
Computer numerical control
2015
The nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic transport. Despite half a century of structural characterization, the architecture of the NPC remains unknown. Here we present the crystal structure of a reconstituted ∼400-kilodalton coat nucleoporin complex (CNC) from Saccharomyces cerevisiae at a 7.4 angstrom resolution. The crystal structure revealed a curved Y-shaped architecture and the molecular details of the coat nucleoporin interactions forming the central \"triskelion\" of the Y. A structural comparison of the yeast CNC with an electron microscopy reconstruction of its human counterpart suggested the evolutionary conservation of the elucidated architecture. Moreover, 32 copies of the CNC crystal structure docked readily into a cryoelectron tomographic reconstruction of the fully assembled human NPC, thereby accounting for ∼16 megadalton of its mass.
Journal Article
Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films
by
Noh, JungHyun
,
Salajkova, Michaela
,
Schütz, Christina
in
639/301/119/544
,
639/301/357
,
639/301/923/919
2014
Cellulose nanocrystals (CNCs), produced by the acid hydrolysis of wood, cotton or other cellulose-rich sources, constitute a renewable nanosized raw material with a broad range of envisaged uses: for example, in composites, cosmetics and medical devices. The intriguing ability of CNCs to self-organize into a chiral nematic (cholesteric) liquid crystal phase with a helical arrangement has attracted significant interest, resulting in much research effort, as this arrangement gives dried CNC films a photonic band gap. The films thus acquire attractive optical properties, creating possibilities for use in applications such as security papers and mirrorless lasing. In this critical review, we discuss the sensitive balance between glass formation and liquid crystal self-assembly that governs the formation of the desired helical structure. We show that several as yet unclarified observations—some constituting severe obstacles for applications of CNCs—may result from competition between the two phenomena. Moreover, by comparison with the corresponding self-assembly processes of other rod-like nanoparticles, for example, carbon nanotubes and
fd
virus particles, we outline how further liquid crystal ordering phenomena may be expected from CNCs if the suspension parameters can be better controlled. Alternative interpretations of some unexpected phenomena are provided, and topics for future research are identified, as are new potential application strategies.
Biomaterials: Nanocellulose in order
Cellulose, a renewable biopolymer used throughout history, in particular to make clothing and paper, has recently attracted the interest of materials scientists in its nanocrystalline form. These nanofibers — produced by the acid hydrolysis of for instance cotton or wood — show promise for use in composites, cosmetics and medical devices. A Sweden-South Korea-based team led by Jan Lagerwall and Lennart Bergström now review the self-assembly of cellulose nanocrystals into a “chiral nematic” liquid-crystalline phase, which exhibits long-range ordering and adopts a helical superstructure. They compare the behavior of nanocellulose to other rod-like nanoparticles, such as nanotubes, and discuss the competitive gelation that can occur, which yields a glassy — rather than liquid-crystalline — phase. Through its chiral nematic arrangement, nanocellulose is endowed with interesting mechanical and optical properties. Furthermore, its liquid-crystalline suspensions can be processed into thin films, whose development and potential applications are discussed.
The chiral liquid crystalline self-organization of cellulose nanocrystals into helical arrangements, giving the resulting materials photonic crystal properties and enhanced mechanical behavior, are comprehensively summarized and compared with other rod-like nanoparticles, for example, carbon nanotubes and
fd
virus. The consequences of the sensitive balance between liquid crystal formation and glass/gel formation are discussed in detail, in particular regarding the development toward control of helix pitch and orientation. Important topics for future studies are identified and suggestions for novel applications are made.
Journal Article