Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,392 result(s) for "Computer systems and distributed systems. User interface"
Sort by:
Controllability of complex networks
The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. Although control theory offers mathematical tools for steering engineered and natural systems towards a desired state, a framework to control complex self-organized systems is lacking. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system’s entire dynamics. We apply these tools to several real networks, finding that the number of driver nodes is determined mainly by the network’s degree distribution. We show that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but that dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the high-degree nodes. How to control complex systems Control theory can be used to steer engineered and natural systems towards a desired state, but a framework to control complex self-organized systems is lacking. Can such networks be controlled? Albert-László Barabási and colleagues tackle this question and arrive at precise mathematical answers that amount to 'yes, up to a point'. They develop analytical tools to study the controllability of an arbitrary complex directed network using both model and real systems, ranging from regulatory, neural and metabolic pathways in living organisms to food webs, cell-phone movements and social interactions. They identify the minimum set of driver nodes whose time-dependent control can guide the system's entire dynamics ( http://go.nature.com/wd9Ek2 ). Surprisingly, these are not usually located at the network hubs.
Design and evaluation of a smart home voice interface for the elderly: acceptability and objection aspects
Smart homes equipped with ambient intelligence technology constitute a promising direction to enable the growing number of elderly to continue to live in their own home as long as possible. However, this calls for technological solutions that suit their specific needs and capabilities. The Sweet-Home project aims at developing a new user friendly technology for home automation based on voice command. This paper reports a user evaluation assessing the acceptance and fear of this new technology. Eight healthy persons between 71 and 88 years old, 7 relatives (child, grandchild or friend) and 3 professional carers participated in a user evaluation. During about 45 min, the persons were questioned in co-discovery in the Domus smart home alternating between interview and wizard of Oz periods followed by a debriefing. The experience aimed at testing four important aspects of the project: voice command, communication with the outside world, domotics system interrupting a person’s activity, and electronic agenda. Voice interface appeared to have a great potential to ease daily living for elderly and frail persons and would be better accepted than more intrusive solutions. By considering still healthy and independent elderly people in the user evaluation, an interesting finding that came up is their overall acceptance provided the system does not drive them to a lazy lifestyle by taking control of everything. This particular fear must be addressed for the development of smart homes that support daily living by giving them more ability to control rather than putting them away from the daily routine.
Classifier chains for multi-label classification
The widely known binary relevance method for multi-label classification, which considers each label as an independent binary problem, has often been overlooked in the literature due to the perceived inadequacy of not directly modelling label correlations. Most current methods invest considerable complexity to model interdependencies between labels. This paper shows that binary relevance-based methods have much to offer, and that high predictive performance can be obtained without impeding scalability to large datasets. We exemplify this with a novel classifier chains method that can model label correlations while maintaining acceptable computational complexity. We extend this approach further in an ensemble framework. An extensive empirical evaluation covers a broad range of multi-label datasets with a variety of evaluation metrics. The results illustrate the competitiveness of the chaining method against related and state-of-the-art methods, both in terms of predictive performance and time complexity.
A Database and Evaluation Methodology for Optical Flow
The quantitative evaluation of optical flow algorithms by Barron et al. ( 1994 ) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at http://vision.middlebury.edu/flow/ . Subsequently a number of researchers have uploaded their results to our website and published papers using the data. A significant improvement in performance has already been achieved. In this paper we analyze the results obtained to date and draw a large number of conclusions from them.
A Multi-View Embedding Space for Modeling Internet Images, Tags, and Their Semantics
This paper investigates the problem of modeling Internet images and associated text or tags for tasks such as image-to-image search, tag-to-image search, and image-to-tag search (image annotation). We start with canonical correlation analysis (CCA), a popular and successful approach for mapping visual and textual features to the same latent space, and incorporate a third view capturing high-level image semantics, represented either by a single category or multiple non-mutually-exclusive concepts. We present two ways to train the three-view embedding: supervised, with the third view coming from ground-truth labels or search keywords; and unsupervised, with semantic themes automatically obtained by clustering the tags. To ensure high accuracy for retrieval tasks while keeping the learning process scalable, we combine multiple strong visual features and use explicit nonlinear kernel mappings to efficiently approximate kernel CCA. To perform retrieval, we use a specially designed similarity function in the embedded space, which substantially outperforms the Euclidean distance. The resulting system produces compelling qualitative results and outperforms a number of two-view baselines on retrieval tasks on three large-scale Internet image datasets.
On evaluating stream learning algorithms
Most streaming decision models evolve continuously over time, run in resource-aware environments, and detect and react to changes in the environment generating data. One important issue, not yet convincingly addressed, is the design of experimental work to evaluate and compare decision models that evolve over time. This paper proposes a general framework for assessing predictive stream learning algorithms. We defend the use of prequential error with forgetting mechanisms to provide reliable error estimators. We prove that, in stationary data and for consistent learning algorithms, the holdout estimator, the prequential error and the prequential error estimated over a sliding window or using fading factors, all converge to the Bayes error. The use of prequential error with forgetting mechanisms reveals to be advantageous in assessing performance and in comparing stream learning algorithms. It is also worthwhile to use the proposed methods for hypothesis testing and for change detection. In a set of experiments in drift scenarios, we evaluate the ability of a standard change detection algorithm to detect change using three prequential error estimators. These experiments point out that the use of forgetting mechanisms (sliding windows or fading factors) are required for fast and efficient change detection. In comparison to sliding windows, fading factors are faster and memoryless, both important requirements for streaming applications. Overall, this paper is a contribution to a discussion on best practice for performance assessment when learning is a continuous process, and the decision models are dynamic and evolve over time.
A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments
Cloud computing environments allow customers to dynamically scale their applications. The key problem is how to lease the right amount of resources, on a pay-as-you-go basis. Application re-dimensioning can be implemented effortlessly, adapting the resources assigned to the application to the incoming user demand. However, the identification of the right amount of resources to lease in order to meet the required Service Level Agreement, while keeping the overall cost low, is not an easy task. Many techniques have been proposed for automating application scaling. We propose a classification of these techniques into five main categories: static threshold-based rules, control theory, reinforcement learning, queuing theory and time series analysis. Then we use this classification to carry out a literature review of proposals for auto-scaling in the cloud.
Security of the Internet of Things: perspectives and challenges
Internet of Things (IoT) is playing a more and more important role after its showing up, it covers from traditional equipment to general household objects such as WSNs and RFID. With the great potential of IoT, there come all kinds of challenges. This paper focuses on the security problems among all other challenges. As IoT is built on the basis of the Internet, security problems of the Internet will also show up in IoT. And as IoT contains three layers: perception layer, transportation layer and application layer, this paper will analyze the security problems of each layer separately and try to find new problems and solutions. This paper also analyzes the cross-layer heterogeneous integration issues and security issues in detail and discusses the security issues of IoT as a whole and tries to find solutions to them. In the end, this paper compares security issues between IoT and traditional network, and discusses opening security issues of IoT.
Reach and grasp by people with tetraplegia using a neurally controlled robotic arm
Two people with long-standing tetraplegia use neural interface system-based control of a robotic arm to perform three-dimensional reach and grasp movements. People with tetraplegia able to grasp with robotic arm John Donoghue and colleagues have previously demonstrated that people with tetraplegia can learn to use neural signals from the motor cortex to control a computer cursor. Work from another lab has also shown that monkeys can learn to use such signals to feed themselves with a robotic arm. Now, Donoghue and colleagues have advanced the technology to a level at which two people with long-standing paralysis — a 58-year-old woman and a 66-year-old man — are able to use a neural interface to direct a robotic arm to reach for and grasp objects. One subject was able to learn to pick up and drink from a bottle using a device implanted 5 years earlier, demonstrating not only that subjects can use the brain–machine interface, but also that it has potential longevity. Paralysis following spinal cord injury, brainstem stroke, amyotrophic lateral sclerosis and other disorders can disconnect the brain from the body, eliminating the ability to perform volitional movements. A neural interface system 1 , 2 , 3 , 4 , 5 could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with long-standing tetraplegia can use a neural interface system to move and click a computer cursor and to control physical devices 6 , 7 , 8 . Able-bodied monkeys have used a neural interface system to control a robotic arm 9 , but it is unknown whether people with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals to direct useful arm actions. Here we demonstrate the ability of two people with long-standing tetraplegia to use neural interface system-based control of a robotic arm to perform three-dimensional reach and grasp movements. Participants controlled the arm and hand over a broad space without explicit training, using signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-channel microelectrode array. One of the study participants, implanted with the sensor 5 years earlier, also used a robotic arm to drink coffee from a bottle. Although robotic reach and grasp actions were not as fast or accurate as those of an able-bodied person, our results demonstrate the feasibility for people with tetraplegia, years after injury to the central nervous system, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals.
Security Challenges for the Public Cloud
Cloud computing represents today's most exciting computing paradigm shift in information technology. However, security and privacy are perceived as primary obstacles to its wide adoption. Here, the authors outline several critical security challenges and motivate further investigation of security solutions for a trustworthy public cloud environment.