Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
6,528
result(s) for
"Concrete floors"
Sort by:
Numerically Evaluation of Dynamic Behavior of Post-Tensioned Concrete Flat Slabs under Free Vibration
2023
The objective of this paper is to investigate the dynamic behaviour of post-tensioned concrete flat slabs with different geometries and damping ratios. Four groups of models with different lengths, widths, thicknesses and damping ratios designed according to the AS3600 standard. These were used to determine the influence of each parameter on the vibration serviceability by comparing the control variable method with the reference model. The vibration assessment parameters were used as natural frequency, peak acceleration, and response factor. Both the SCI/CSTR43 standard theoretical calculations method and the Strand7 finite element analysis (FEA) method are used to determine the effect of different geometries and damping ratios on vibration. The feasibility of the Strand7 FEA method for vibration analysis is also assessed by calculating the errors of the two methods. The paper concludes that the Strand7 FEA method is highly accurate and feasible. The span in both directions has a large effect on the natural frequency, and increasing both the slab thickness and the damping ratio are effective methods to improve the vibration serviceability. Based on the research in this paper, recommendations are provided for future vibration design of post-tensioned concrete slabs.
Journal Article
Influence of the Fire Temperature Regime on the Fire-Retardant Ability of Reinforced-Concrete Floors Coating
by
Kovalov, Andrii
,
Otrosh, Yurii
,
Semkiv, Oleg
in
Concrete floors
,
Fire resistance
,
Flame retardants
2020
In the paper, the tests have been analysed for fire-resistant quality of the hollow-core reinforced-concrete floors with fire-retardant plaster covering under standard temperature regime of the fire. Using the methodology for determining the characteristics of fire-retardant coatings ability for reinforced-concrete floors, the dependences have been obtained of the fire-retardant coating thickness from the concrete protective layer of a hollow-core reinforced-concrete floor for a fire resistance limit of 180 minutes with a temperature regime of hydrocarbon fire and a tunnel curve according to the Netherlands standards (RWS). It has been concluded about the minimum required thickness of the studied fire-retardant coating to provide the required fire resistance limit of a hollow-core reinforced-concrete floor under the indicated fire regimes.
Journal Article
Effect of different flooring types on pressure distribution under the bovine claw – an ex vivo study
2018
Background
Mechanical interactions between hard floorings and the sole of bovine claws can be reasonable to cause traumatic claw lesions. In this ex vivo study, the direct kinetic impact of concrete and three types of rubber mats on the sole of dairy cattle claws was analyzed. In order to apply uniform loads, isolated distal hind limbs of adult Holstein Friesian dairy cows were functionally trimmed according to the Dutch method and attached to a load applicator. Kinetic data were recorded using a thin, foil-based pressure measurement system (Hoof™ System, Tekscan®).
Results
On concrete, the load distribution between the lateral and medial claw was less balanced than on the rubber floorings. The loaded area was significantly smaller on concrete (32.2 cm
2
) compared to all rubber mats (48.3–58.0 cm
2
). Average pressures (
P
av
) and maximum pressures (
P
max
) were significantly higher on concrete (P
av
44.7 N/cm
2
; P
max
130.3 N/cm
2
) compared to the rubber floorings (P
av
24.9–29.7 N/cm
2
; P
max
71.9–87.2 N/cm
2
). Pressure peaks occurred mainly in plantar and abaxial parts of the lateral claw and in apical and plantar regions of the medial claw. Load distribution displayed a widely unloaded slope region, but considering the pressure distribution under the claw, none of the zones showed a generally lower pressure exposure.
Conclusions
Altogether, rubber floorings lead to a significant mechanical relief of the sole compared to concrete. Furthermore, relevant differences between the tested rubber mats could be determined. Therefore the used system may be applied to compare further flooring types.
Journal Article
Effect of Slat and Gap Width of Slatted Concrete Flooring on Sow Gait Using Kinematics Analysis
2019
The housing of gestating sows in groups requires sound information about the adapted design of the pen floor. Slatted concrete floors are commonly used for effective drainage of manure but can cause feet injuries and lameness. In the present study, kinematics were used to characterize the gait of 12 gilts and 12 lame sows walking in a corridor on slatted concrete floors with different combinations of slat (85, 105 or 125 mm) and gap (19, 22 or 25 mm) widths. The nine experimental floors were tested with slats in the perpendicular and parallel orientation to the direction of animal walk, according to a duplicated lattice design. Gait parameters were quantified using spatial, temporal and angular kinematics for front and rear limbs. Some parameters were significantly affected by the treatments (p < 0.05), but the effects differed between gilts and lame sows and between slat orientations. Gap width had a significant effect on parameters such as back angle, stride length, foot height, and carpal and tarsal joint angle amplitudes. Slat width significantly affected parameters such as foot height, and carpal and tarsal joint angle amplitudes. Comparisons of the different combinations of slat and gap widths revealed that slats with a width of 105–125 mm and gap width of 19–22 mm had the least effect on the gait characteristics of the gilts and sows.
Journal Article
Experimental and analytical studies on the vibration serviceability of long-span prestressed concrete floor
2018
An extensive experimental and theoretical research study was undertaken to study the vibration serviceability of a long-span prestressed concrete floor system to be used in the lounge of a major airport. Specifically, jumping impact tests were carried out to obtain the floor’s modal parameters, followed by an analysis of the distribution of peak accelerations. Running tests were also performed to capture the acceleration responses. The prestressed concrete floor was found to have a low fundamental natural frequency (≈ 8.86 Hz) corresponding to the average modal damping ratio of ≈ 2.17%. A coefficients
β
rp
is proposed for convenient calculation of the maximum root-mean-square acceleration for running. In the theoretical analysis, the prestressed concrete floor under running excitation is treated as a two-span continuous anisotropic rectangular plate with simply-supported edges. The calculated analytical results (natural frequencies and root-mean-square acceleration) agree well with the experimental ones. The analytical approach is thus validated.
Journal Article
Reducing Crack Risk in Industrial Concrete Floors
2014
Cracking and curling are two important problems in industrial concrete floors. In many practical cases, it is easier to design the concrete floor slab for mechanical loads than for shrinkage stresses. This paper proposes a simple equation that mirrors the major factors influencing the crack risk in concrete floor slabs. By using this equation, the industrial floor designer or contractor can make a proper material selection that leads to a substantially reduced crack risk. Tests on strength, free shrinkage, restrained shrinkage, and flexural creep support this hypothesis. Furthermore, the use of shrinkage-reducing admixtures (SRAs) seems to not only reduce the free shrinkage but also maintains the beneficial condition of substantial creep that leads to shrinkage stress reduction.
Journal Article
Investigation of Thermal Behaviour of a Hybrid Precasted Concrete Floor using Embedded Sensors
2018
Concrete structures expand and contract in response to temperature changes which can result in structural strain and cracking. However, there is a limited amount of robust field data on hybrid concrete floor structures. Shortage of such data impacts on our understanding of how concrete structures respond to thermal effects and ultimately the overall design of concrete structures. Thus, a comprehensive structural and environmental monitoring strategy was implemented by the authors during the construction of an educational building. Sensors were embedded in the precast and in situ components of a hybrid concrete lattice girder flat slab so that the thermal response of the floor during the manufacture, construction and operational stages could be investigated. Many aspects of the thermal behaviour of the floor during the construction phase were monitored using the embedded sensors. The early-age thermal effects during curing and the impact of the variation of ambient temperature (daily and seasonal) and solar radiation on the behaviour of concrete floor is explored in the paper. Values for restraint factors and the in situ restrained coefficient of thermal expansion of concrete are calculated using the data from the embedded sensors. Numerical modelling of the thermal behaviour of the hybrid concrete floor was undertaken and validated using the real-time field measurements. The data presented and analysed in this paper can be used to improve the understanding and modelling of the thermal behaviour of a hybrid concrete floor. This will assist with improved design of sustainable buildings as it allows the environmental performance of the floor to be optimised with respect to controlling the internal environment, thermal mass and energy efficiency.
Journal Article
Damp-proof coursing
2020
While damp-proof coursing can prevent the passage of moisture to the upper surface of concrete beams how can the beam ends be protected?
Journal Article
Optimal Design of a Novel Large-Span Cable-Supported Steel–Concrete Composite Floor System
2024
This paper optimizes the design of a novel large-span cable-supported steel–concrete composite floor system in a simply supported single-span, single-strut configuration, aiming for cost-effective solutions and minimal steel consumption. The optimization considers various cross-sectional dimensions, adhering to building standards and engineering practices, and is based on a non-linear programming (NLP) algorithm. Parameters of live loads ranging from 2 to 10 kN/m2 and spans from 20 to 100 m are considered. The optimization results show that cable-supported composite floors with a single strut exhibit robust economic feasibility for spans of less than 80 m and live loads under 8 kN/m2. Compared to conventional composite floors with welded I-beams, the cable-supported system offers more cost-effective cross-sections and reduces steel consumption. The savings in economically equivalent steel consumption range from 20% to 60%. Discussion on the area ratio of cables to steel beam in the optimal cross-section reveals that the secondary load-bearing system (i.e., bending of the main beam with an effective span length of L/2) may require more steel in cases of ultra-large spans. Therefore, the economical efficiency of cable-supported composite beams with multiple struts and smaller effective span lengths warrants further exploration in future studies.
Journal Article