Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19,685
result(s) for
"Condition monitoring"
Sort by:
A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges
by
Sassani, Farrokh
,
Nasir, Vahid
in
Artificial neural networks
,
Belief networks
,
CAE) and Design
2021
Data-driven methods provided smart manufacturing with unprecedented opportunities to facilitate the transition toward Industry 4.0–based production. Machine learning and deep learning play a critical role in developing intelligent systems for descriptive, diagnostic, and predictive analytics for machine tools and process health monitoring. This paper reviews the opportunities and challenges of deep learning (DL) for intelligent machining and tool monitoring. The components of an intelligent monitoring framework are introduced. The main advantages and disadvantages of machine learning (ML) models are presented and compared with those of deep models. The main DL models, including autoencoders, deep belief networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs), were discussed, and their applications in intelligent machining and tool condition monitoring were reviewed. The opportunities of data-driven smart manufacturing approach applied to intelligent machining were discussed to be (1) automated feature engineering, (2) handling big data, (3) handling high-dimensional data, (4) avoiding sensor redundancy, (5) optimal sensor fusion, and (6) offering hybrid intelligent models. Finally, the data-driven challenges in smart manufacturing, including the challenges associated with the data size, data nature, model selection, and process uncertainty, were discussed, and the research gaps were outlined.
Journal Article
Review of tool condition monitoring in machining and opportunities for deep learning
by
Sener, B.
,
Unver, H. O.
,
Serin, G.
in
Acoustic emission
,
Artificial intelligence
,
Artificial neural networks
2020
Tool condition monitoring and machine tool diagnostics are performed using advanced sensors and computational intelligence to predict and avoid adverse conditions for cutting tools and machinery. Undesirable conditions during machining cause chatter, tool wear, and tool breakage, directly affecting the tool life and consequently the surface quality, dimensional accuracy of the machined parts, and tool costs. Tool condition monitoring is, therefore, extremely important for manufacturing efficiency and economics. Acoustic emission, vibration, power, and temperature sensors monitor the stability and efficiency of the machining process, collecting large amounts of data to detect tool wear, breakage, and chatter. Studies on monitoring the vibrations and acoustic emissions from machine tools have provided information and data regarding the detection of undesirable conditions. Herein, studies on tool condition monitoring are reviewed and classified. As Industry 4.0 penetrates all manufacturing sectors, the amount of manufacturing data generated has reached the level of big data, and classical artificial intelligence analyses are no longer adequate. Nevertheless, recent advances in deep learning methods have achieved revolutionary success in numerous industries. Deep multi-layer perceptron (DMLP), long-short-term memory (LSTM), convolutional neural network (CNN), and deep reinforcement learning (DRL) are among the most preferred methods of deep learning in recent years. As data size increases, these methods have shown promising performance improvement in prediction and learning, compared to classical artificial intelligence methods. This paper summarizes tool condition monitoring first, then presents the underlying theory of some of the most recent deep learning methods, and finally, attempts to identify new opportunities in tool condition monitoring, toward the realization of Industry 4.0.
Journal Article
Review of tool condition monitoring methods in milling processes
by
Xue, Wei
,
Zhou, Yuqing
in
CAE) and Design
,
Computer-Aided Engineering (CAD
,
Condition monitoring
2018
Accurate tool condition monitoring (TCM) is essential for the development of fully automated milling processes. However, while considerable research has been conducted in industrial and academic settings, the complexity of milling processes continues to complicate the implementation of TCM. This paper presents a review of the state-of-the-art methods employed for conducting TCM in milling processes. The review includes three key components: (1) sensors, (2) feature extraction, and (3) monitoring models for the categorization of cutting tool states in the decision-making process. In addition, the primary strengths and weaknesses of current practices are presented for these three components. Finally, this paper concludes with a list of recommendations for future research.
Journal Article
Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review
by
Bustillo, Andres
,
Gupta, Munish K
,
Kuntoğlu, Mustafa
in
Accelerometers
,
Acoustic emission
,
Adaptive systems
2023
The wear of cutting tools, cutting force determination, surface roughness variations and other machining responses are of keen interest to latest researchers. The variations of these machining responses results in change in dimensional accuracy and productivity upto great extent. In addition, an excessive increase in wear leads to catastrophic consequences, exceeding the tool breakage. Therefore, this article discusses the online trend of modern approaches in tool condition monitoring while different machining operations. For this purpose, the effective use of new sensors and artificial intelligence (AI) is considered and followed during this holistic review work. The sensor systems used for monitoring tool wear are dynamometers, accelerometers, acoustic emission sensors, current and power sensors, image sensors, other sensors. These systems allow to solve the problem of automation and modeling of technological parameters of the main types of cutting, such as turning, milling, drilling and grinding. The modern artificial intelligence methods are considered, such as: Neural networks, Image recognition, Fuzzy logic, Adaptive neuro-fuzzy inference systems, Bayesian Networks, Support vector machine, Ensembles, Decision and regression trees, k-nearest neighbors, Artificial Neural Network, Markov model, Singular Spectrum Analysis, Genetic algorithms. Discussions also includes the main advantages, disadvantages and prospects of using various AI methods for tool wear monitoring. Moreover, the problems and future directions of the main processing methods using AI models are also highlighted.
Journal Article
Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study
by
AlShorman, Omar
,
Alkahatni, Fahad
,
Irfan, Muhammad
in
Acoustic emission
,
Acoustics
,
Emission analysis
2021
Nowadays, condition-based maintenance (CBM) and fault diagnosis (FD) of rotating machinery (RM) has a vital role in the modern industrial world. However, the remaining useful life (RUL) of machinery is crucial for continuous monitoring and timely maintenance. Moreover, reduced maintenance costs, enhanced safety, efficiency, reliability, and availability are the main important industrial issues to maintain valuable and high-cost machinery. Undoubtedly, induction motor (IM) is considered to be a pivotal component in industrial machines. Recently, acoustic emission (AE) becomes a very accurate and efficient method for fault, leaks and fatigue detection and monitoring techniques. Moreover, CM and FD based on the AE of IM have been growing over recent years. The proposed research study aims to review condition monitoring (CM) and fault diagnosis (FD) studies based on sound and AE for four types of faults: bearings, rotor, stator, and compound. The study also points out the advantages and limitations of using sound and AE analysis in CM and FD. Existing public datasets for AE based analysis for CM and FD of IM are also mentioned. Finally, challenges facing AE based CM and FD for RM, especially for IM, and possible future works are addressed in this study.
Journal Article
A Review of Feature Extraction Methods in Vibration-Based Condition Monitoring and Its Application for Degradation Trend Estimation of Low-Speed Slew Bearing
2017
This paper presents an empirical study of feature extraction methods for the application of low-speed slew bearing condition monitoring. The aim of the study is to find the proper features that represent the degradation condition of slew bearing rotating at very low speed (≈ 1 r/min) with naturally defect. The literature study of existing research, related to feature extraction methods or algorithms in a wide range of applications such as vibration analysis, time series analysis and bio-medical signal processing, is discussed. Some features are applied in vibration slew bearing data acquired from laboratory tests. The selected features such as impulse factor, margin factor, approximate entropy and largest Lyapunov exponent (LLE) show obvious changes in bearing condition from normal condition to final failure.
Journal Article
A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool life prediction
by
Liu, Hao
,
Tang, Diyin
,
Liang, Shuang
in
CAE) and Design
,
Computer-Aided Engineering (CAD
,
Condition monitoring
2017
Tool wear is one of the important indicators to reflect the health status of a machining system. In order to obtain tool’s wear status, tool condition monitoring (TCM) utilizes advanced sensor techniques, hoping to find out the wear status through those sensor signals. In this paper, a novel weighted hidden Markov model (HMM)-based approach is proposed for tool wear monitoring and tool life prediction, using the signals provided by TCM techniques. To describe the dynamic nature of wear evolution, a weighted HMM is first developed, which takes wear rate as the hidden state and formulates multiple HMMs in a weighted manner to include sufficient historical information. Explicit formulas to estimate the model parameters are also provided. Then, a particular probabilistic approach using the weighted HMM is proposed to estimate tool wear and predict tool’s remaining useful life during tool operation. The proposed weighted HMM-based approach is tested on a real dataset of a high-speed CNC milling machine cutters. The experimental results show that this approach is effective in estimating tool wear and predicting tool life, and it outperforms the conventional HMM approach.
Journal Article
Cloud-enhanced predictive maintenance
2018
Maintenance of assembly and manufacturing equipment is crucial to ensure productivity, product quality, on-time delivery, and a safe working environment. Predictive maintenance is an approach that utilises the condition monitoring data to predict the future machine conditions and makes decisions upon this prediction. The main aim of the present research is to achieve an improvement in predictive condition-based maintenance decision making through a cloud-based approach with usage of wide information content. For the improvement, it is crucial to identify and track not only condition related data but also context data. Context data allows better utilisation of condition monitoring data as well as analysis based on a machine population. The objective of this paper is to outline the first steps of a framework and methodology to handle and process maintenance, production, and factory related data from the first lifecycle phase to the operation and maintenance phase. Initial case study aims to validate the work in the context of real industrial applications.
Journal Article
A novel approach of tool condition monitoring in sustainable machining of Ni alloy with transfer learning models
by
Shibi, C. Sherin
,
Sharma, Vishal S
,
Ross, Nimel Sworna
in
Advanced manufacturing technologies
,
Cutting tools
,
Cutting wear
2024
Cutting tool condition is crucial in metal cutting. In-process tool failures significantly influences the surface roughness, power consumption, and process endurance. Industries are interested in supervisory systems that anticipate the health of the tool. A methodology that utilizes the information to predict problems and to avoid failures must be embraced. In recent years, several machine learning-based predictive modelling strategies for estimating tool wear have been emerged. However, due to intricate tool wear mechanisms, doing so with limited datasets confronts difficulties under varying operating conditions. This article proposes the use of transfer learning technology to detect tool wear, especially flank wear under distinct cutting environments (dry, flood, MQL and cryogenic). In this study, the state of the cutting tool was determined using the pre-trained networks like AlexNet, VGG-16, ResNet, MobileNet, and Inception-V3. The best-performing network was recommended for tool condition monitoring, considering the effects of hyperparameters such as batch size, learning rate, solver, and train-test split ratio. In light of this, the recommended methodology may prove to be highly helpful for classifying and suggesting the suitable cutting conditions, especially under limited data situation. The transfer learning model with Inception-V3 is extremely useful for intelligent machining applications.
Journal Article
A hybrid information model based on long short-term memory network for tool condition monitoring
by
Hu, Xiaofeng
,
Liu Yingchao
,
Zhang, Wenjuan
in
Advanced manufacturing technologies
,
Catastrophic events
,
Condition monitoring
2020
Excessive tool wear leads to the damage and eventual breakage of the tool, workpiece, and machining center. Therefore, it is crucial to monitor the condition of tools during processing so that appropriate actions can be taken to prevent catastrophic tool failure. This paper presents a hybrid information system based on a long short-term memory network (LSTM) for tool wear prediction. First, a stacked LSTM is used to extract the abstract and deep features contained within the multi-sensor time series. Subsequently, the temporal features extracted are combined with process information to form a new input vector. Finally, a nonlinear regression model is designed to predict tool wear based on the new input vector. The proposed method is validated on both NASA Ames milling data set and the 2010 PHM Data Challenge data set. Results show the outstanding performance of the hybrid information model in tool wear prediction, especially when the experiments are run under various operating conditions.
Journal Article