Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
5
result(s) for
"Conditioned response Computer simulation."
Sort by:
Mechanisms in classical conditioning : a computational approach
\"What mechanisms are involved in enabling us to generate predictions of what will happen in the near future? Although we use associative mechanisms as the basis to predict future events, such as using cues from our surrounding environment, timing, attentional, and configural mechanisms are also needed to improve this function. Timing mechanisms allow us to determine when those events will take place. ... Written for graduates and researchers in neuroscience, computer science, biomedical engineering and psychology, the author presents neural network models that incorporate these mechanisms and shows, through computer simulations, how they explain the multiple properties of associative learning\"--Provided by publisher.
Mesoscale simulations predict the role of synergistic cerebellar plasticity during classical eyeblink conditioning
by
De Zeeuw, Chris I.
,
Casellato, Claudia
,
D’Angelo, Egidio
in
Animals
,
Biology and Life Sciences
,
Blinking - physiology
2024
According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse ( pf -PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones–more likely depression, upbound microzones—more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf -PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.
Journal Article
Numerical Simulation of Flood Control Levee Deformation by Shield Tunnel Excavation through the Liuyang River: A Case Study
2023
The interval section of the Liuyang River flood control levee project of the Changsha Metro Line 6 is used as the engineering background of this study. A three-dimensional finite element numerical model of a tunnel shield containing complex interfaces is established by using the multifield coupling software COMSOL. The paper studied the deformation of flood control levees under shield tunnel excavation working conditions. The results show that when the left line shield machine is excavated below the Liuyang River flood control levee, the deformation of the flood control levee and the surrounding rock of the tunnel is biased towards the built right line tunnel. And it has an impact on the bridge pile near the tunnel. When the shield of the left line crosses the flood control levee, it can easily cause a large deformation and displacement of the levee above the area between the two shields. To ensure the controlled deformation of the levee, the construction should ensure the spacing between the two tunnel palm faces as far as possible and should be far away from other structures on the levee. When the shield crosses the levee, the deformation that occurs at the base of the levee is significantly higher than the deformations that occur at other locations of the levee. Displacement monitoring and secondary reinforcement at the base of the flood control levee appear to be necessary. The numerical simulation results validate the feasibility of using the multifield coupling software COMSOL to study the construction modeling of shield tunnels through rivers and its advantages. This method provides a practical framework for similar tunnel performance engineering or displacement monitoring in future projects.
Journal Article
A computational model for learning from repeated traumatic experiences under uncertainty
2023
Traumatic events can lead to lifelong, inflexible adaptations in threat perception and behavior, which characterize posttraumatic stress disorder (PTSD). This process involves associations between sensory cues and internal states of threat and then generalization of the threat responses to previously neutral cues. However, most formulations neglect adaptations to threat that are not specific to those associations. To incorporate nonassociative responses to threat, we propose a computational theory of PTSD based on adaptation to the frequency of traumatic events by using a reinforcement learning momentum model. Recent threat prediction errors generate momentum that influences subsequent threat perception in novel contexts. This model fits primary data acquired from a mouse model of PTSD, in which unpredictable footshocks in one context accelerate threat learning in a novel context. The theory is consistent with epidemiological data that show that PTSD incidence increases with the number of traumatic events, as well as the disproportionate impact of early life trauma. Because the theory proposes that PTSD relates to the average of recent threat prediction errors rather than the strength of a specific association, it makes novel predictions for the treatment of PTSD.
Journal Article