Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,210
result(s) for
"Conditioning, Classical - physiology"
Sort by:
Preventing the return of fear in humans using reconsolidation update mechanisms
by
Monfils, Marie-H.
,
Johnson, David C.
,
Raio, Candace M.
in
Affectivity. Emotion
,
Analysis
,
Biological and medical sciences
2010
Recent research on changing fears has examined targeting reconsolidation. During reconsolidation, stored information is rendered labile after being retrieved. Pharmacological manipulations at this stage result in an inability to retrieve the memories at later times, suggesting that they are erased or persistently inhibited. Unfortunately, the use of these pharmacological manipulations in humans can be problematic. Here we introduce a non-invasive technique to target the reconsolidation of fear memories in humans. We provide evidence that old fear memories can be updated with non-fearful information provided during the reconsolidation window. As a consequence, fear responses are no longer expressed, an effect that lasted at least a year and was selective only to reactivated memories without affecting others. These findings demonstrate the adaptive role of reconsolidation as a window of opportunity to rewrite emotional memories, and suggest a non-invasive technique that can be used safely in humans to prevent the return of fear.
An appointment with fear
Reconsolidation is a natural mechanism in human memory: the reconsolidation phase allows new information available at the time of retrieval to be incorporated into an old memory. Although pharmacological blockade of reconsolidation has been used to prevent the return of fear in animal models, many of these manipulations involve compounds that are toxic to humans. Elizabeth Phelps and co-workers now report a non-invasive technique of rewriting fear memories that avoids the use of drugs. The procedure is based on an established technique in which memories of traumatic events are 'extinguished' by repeated exposure to traumatic reminders in a safe environment. This works up to a point, but memories are masked rather than eliminated and can return, for example with the passage of time or due to stress. The new advance lies in timing: if the 'safe' information is introduced during the reconsolidation window of old fear memories, the fear does not return. This work suggests that post-traumatic stress disorder and other anxiety conditions might be responsive to new types of non-invasive therapy.
During reconsolidation of memories, stored information is rendered labile after being retrieved and can be manipulated. Previous studies have used pharmacological intervention to disrupt retrieved memories; here, however, a non-invasive, behavioural technique is used to target the reconsolidation of fear memories in humans. Non-fearful information provided during the reconsolidation window appears to update old fear memories, causing a lack of expression of fear responses.
Journal Article
Oxytocin Facilitates Pavlovian Fear Learning in Males
by
Patin, Alexandra
,
Domschke, Katharina
,
Preckel, Katrin
in
Administration, Intranasal
,
Adult
,
Animal reproduction
2016
In human evolution, social group living and Pavlovian fear conditioning have evolved as adaptive mechanisms promoting survival and reproductive success. The evolutionarily conserved hypothalamic peptide oxytocin is a key modulator of human sociality, but its effects on fear conditioning are still elusive. In the present randomized controlled study involving 97 healthy male subjects, we therefore employed functional magnetic resonance imaging and simultaneous skin conductance response (SCR) measures to characterize the modulatory influence of intranasal oxytocin (24 IU) on Pavlovian fear conditioning. We found that the peptide strengthened conditioning on both the behavioral and neural levels. Specifically, subjects exhibited faster task-related responses and enhanced SCRs to fear-associated stimuli in the late phase of conditioning, which was paralleled by heightened activity in cingulate cortex subregions in the absence of changes in amygdala function. This speaks against amygdalocentric views of oxytocin having pure anxiolytic-like effects. Instead, it suggests that the peptide enables extremely rapid and flexible adaptation to fear signals in social contexts, which may confer clear evolutionary advantages but could also elevate vulnerability for the pathological sequelae of interpersonal trauma.
Journal Article
L-DOPA improves extinction memory retrieval after successful fear extinction
by
Tüscher, O
,
Kalisch, R
,
Gerlicher, A M V
in
Anxiety
,
Cognitive behavioral therapy
,
Conductance
2019
RationaleA promising strategy to prevent a return of fear after exposure-based therapy in anxiety disorders is to pharmacologically enhance the extinction memory consolidation presumed to occur after exposure. Accumulating evidence suggests that the effect of a number of pharmacological consolidation enhancers depends on a successful fear reduction during exposure. Here, we employed the dopamine precursor L-DOPA to clarify whether its documented potential to enhance extinction memory consolidation is dependent on successful fear extinction.MethodsIn two double-blind, randomized and placebo-controlled experiments (experiment 1: N = 79, experiment 2: N = 32) comprising fear conditioning (day 1), extinction followed by administration of 150 mg L-DOPA or placebo (day 2) and a memory test (day 3) in healthy male adults, conditioned responses were assessed as differential skin conductance responses. We tested whether the effect of L-DOPA on conditioned responses at test depended on conditioned responses at the end of extinction in an experiment with a short (10 trials, experiment 1) and long (25 trials, experiment 2) extinction session.ResultsIn both experiments, the effect of L-DOPA was dependent on conditioned responses at the end of extinction. That is, post-extinction L-DOPA compared to placebo administration reduced conditioned responses at test only in participants showing a complete reduction of conditioned fear at the end of extinction.ConclusionThe results support the potential use of L-DOPA as a pharmacological adjunct to exposure treatment, but point towards a common boundary condition for pharmacological consolidation enhancers: a successful reduction of fear in the exposure session.
Journal Article
Conscious expectancy rather than associative strength elicits brain activity during single-cue fear conditioning
by
Greening, Steven G
,
Grégoire, Laurent
,
Choi, Jong Moon
in
Brain - physiology
,
Brain research
,
Classical conditioning
2023
Abstract
The neurocognitive processes underlying Pavlovian conditioning in humans are still largely debated. The conventional view is that conditioned responses (CRs) emerge automatically as a function of the contingencies between a conditioned stimulus (CS) and an unconditioned stimulus (US). As such, the associative strength model asserts that the frequency or amplitude of CRs reflects the strength of the CS–US associations. Alternatively, the expectation model asserts that the presentation of the CS triggers conscious expectancy of the US, which is responsible for the production of CRs. The present study tested the hypothesis that there are dissociable brain networks related to the expectancy and associative strength theories using a single-cue fear conditioning paradigm with a pseudo-random intermittent reinforcement schedule during functional magnetic resonance imaging. Participants’ (n = 21) trial-by-trial expectations of receiving shock displayed a significant linear effect consistent with the expectation model. We also found a positive linear relationship between the expectancy model and activity in frontoparietal brain areas including the dorsolateral prefrontal cortex (PFC) and dorsomedial PFC. While an exploratory analysis found a linear relationship consistent with the associated strength model in the insula and early visual cortex, our primary results are consistent with the view that conscious expectancy contributes to CRs.
Journal Article
Stimulus-Based Extinction Generalization: Neural Correlates and Modulation by Cortisol
2021
Abstract
Background
While healthy individuals and patients with anxiety disorders easily generalize fear responses, extinction learning is more stimulus specific. Treatments aiming to generalize extinction learning are urgently needed, since they comprise the potential to overcome stimulus specificity and reduce relapses, particularly in the face of stressful events.
Methods
In the current 3-day functional magnetic resonance imaging fear conditioning paradigm, we aimed to create a generalized extinction memory trace in 60 healthy men and women by presenting multiple sizes of 1 conditioned stimulus during extinction training (CS+G; generalized), whereas the other conditioned stimulus was solely presented in its original size (CS+N; nongeneralized). Recall was tested on the third day after pharmacological administration of either the stress hormone cortisol or placebo.
Results
After successful fear acquisition, prolonged activation of the amygdala and insula and deactivation of the ventromedial prefrontal cortex for CS+G compared with CS+N during extinction learning indicated sustained fear to the generalization stimuli. In line with our hypotheses, reduced amygdala activation was observed after extinction generalization on the third day in the contrast CS+G minus CS+N, possibly reflecting an attenuated return of fear. Cortisol administration before recall, however, blocked this effect.
Conclusions
Taken together, the findings show that extinction generalization was associated with decreased activation of the fear network during recall after prolonged activation of the fear network during extinction learning. However, the generalization of the extinction memory did not counteract the detrimental effects of stress hormones on recall. Thus, stimulus-based extinction generalization may not be sufficient to reduce relapses after stressful experiences.
Journal Article
Augmenting extinction learning with d-cycloserine reduces return of fear: a randomized, placebo-controlled fMRI study
2020
d-cycloserine (DCS), a partial NMDA-receptor agonist, seems to be a promising enhancer for exposure therapy in anxiety disorders. It has been tested successfully in animal models of fear extinction, where DCS enhanced extinction learning. Applied in clinical studies, results of DCS-augmented exposure therapy remain ambiguous, calling for a deeper understanding of the underlying mechanisms of DCS and its exact effect on extinction learning and return of fear (ROF) in humans. In the present study, we investigated the effect of DCS-augmented extinction learning on behavioral, psychophysiological, and neural indices of ROF during a 24-h delayed recall test. Thirty-seven participants entered a randomized, placebo-controlled, double-blind, 3-day fear conditioning and delayed extinction fMRI design. One hour before extinction training, participants received an oral dose of 50 mg of DCS or a placebo. Behavioral arousal ratings revealed a generalized ROF during extinction recall in the placebo but not DCS group. Furthermore, participants receiving DCS compared to placebo showed attenuated differential BOLD responses in left posterior hippocampus and amygdala from extinction learning to extinction recall, due to increased hippocampal recruitment in placebo and trendwise decreased amygdala responding in DCS subjects. Our finding that DCS reduces ROF in arousal ratings and neural structures subserving defensive reactions support a role for NMDA receptors in extinction memory consolidation and encourage further translational research.
Journal Article
The effect of cathodal tDCS on fear extinction: A cross-measures study
2019
Extinction-based procedures are often used to inhibit maladaptive fear responses. However, because extinction procedures show efficacy limitations, transcranial direct current stimulation (tDCS) has been suggested as a promising add-on enhancer.
In this study, we tested how cathodal tDCS over the right dorsolateral prefrontal cortex affects extinction and tried to unveil the processes at play that boost the effectiveness of extinction procedures and its translational potential to the treatment of anxiety disorders.
We implemented a fear conditioning paradigm whereby 41 healthy women (mean age = 20.51 ± 5.0) were assigned to either cathodal tDCS (n = 27) or sham tDCS (n = 16). Fear responses were measured with self-reports, autonomic responses, and implicit avoidance tendencies.
Cathodal tDCS shows no statistically significant effect in extinction, according to self-reports, and seems to even negatively affect fear conditioned skin conductance responses. However, one to three months after the tDCS session and extinction, we found a group difference in the action tendencies towards the neutral stimuli (F (1, 41) = 12.04, p = .001, ηp2 = .227), with the cathodal tDCS group (as opposed to the sham group) showing a safety learning (a positive bias towards the CS-), with a moderate effect size. This suggests that cathodal tDCS may foster stimuli discrimination, leading to a decreased generalization effect.
Cathodal tDCS may have enhanced long-term distinctiveness between threatening cues and perceptively similar neutral cues through a disambiguation process of the value of the neutral stimuli-a therapeutic target in anxiety disorders. Future studies should confirm these results and extend the study of cathodal tDCS effect on short term avoidance tendencies.
Journal Article
Effects of oxytocin administration and conditioned oxytocin on brain activity: An fMRI study
by
Evers, Andrea W. M.
,
Veldhuijzen, Dieuwke S.
,
Chavannes, Niels H.
in
Acoustic Stimulation
,
Acoustics
,
Amygdala
2020
It has been demonstrated that secretion of several hormones can be classically conditioned, however, the underlying brain responses of such conditioning have never been investigated before. In this study we aimed to investigate how oxytocin administration and classically conditioned oxytocin influence brain responses. In total, 88 females were allocated to one of three groups: oxytocin administration, conditioned oxytocin, or placebo, and underwent an experiment consisting of three acquisition and three evocation days. Participants in the conditioned group received 24 IU of oxytocin together with a conditioned stimulus (CS) during three acquisition days and placebo with the CS on three evocation days. The oxytocin administration group received 24 IU of oxytocin and the placebo group received placebo during all days. On the last evocation day, fMRI scanning was performed for all participants during three tasks previously shown to be affected by oxytocin: presentation of emotional faces, crying baby sounds and heat pain. Region of interest analysis revealed that there was significantly lower activation in the right amygdala and in two clusters in the left superior temporal gyrus in the oxytocin administration group compared to the placebo group in response to observing fearful faces. The activation in the conditioned oxytocin group was in between the other two groups for these clusters but did not significantly differ from either group. No group differences were found in the other tasks. Preliminary evidence was found for brain activation of a conditioned oxytocin response; however, despite this trend in the expected direction, the conditioned group did not significantly differ from other groups. Future research should, therefore, investigate the optimal timing of conditioned endocrine responses and study whether the findings generalize to other hormones as well.
Journal Article
From Pavlov to pain: How predictability affects the anticipation and processing of visceral pain in a fear conditioning paradigm
by
Bingel, Ulrike
,
Schlamann, Marc
,
Labrenz, Franziska
in
Acquisitions & mergers
,
Adolescent
,
Adult
2016
Conditioned pain-related fear may contribute to hyperalgesia and central sensitization, but this has not been tested for interoceptive, visceral pain. The underlying ability to accurately predict pain is based on predictive cue properties and may alter the sensory processing and cognitive–emotional modulation of pain thus exacerbating the subjective pain experience. In this functional magnetic resonance imaging study using painful rectal distensions as unconditioned stimuli (US), we addressed changes in the neural processing of pain during the acquisition of pain-related fear and subsequently tested if conditioned stimuli (CS) contribute to hyperalgesia and increased neural responses in pain-encoding regions. N=49 healthy volunteers were assigned to one of two groups and underwent 3T fMRI during acquisition of either differential fear conditioning (predictable) or non-contingent presentation of CS and US (unpredictable). During a subsequent test phase, pain stimuli signaled randomly by the CSs were delivered. For the acquisition, results confirmed differential conditioning in the predictable but not the unpredictable group. With regard to activation in response to painful stimuli, the unpredictable compared to the predictable group revealed greater activation in pain-encoding (somatosensory cortex, insula) and pain-modulatory (prefrontal and cingulate cortices, periaqueductal grey, parahippocampus) regions. In the test phase, no evidence of hyperalgesia or central sensitization was found, but the predictable group demonstrated enhanced caudate nucleus activation in response to CS−-signaled pain. These findings support that during fear conditioning, the ability to predict pain affects neural processing of visceral pain and alters the associative learning processes underlying the acquisition of predictive properties of cues signaling pain, but conditioned pain-related fear does not result in visceral hyperalgesia or central sensitization.
•We addressed the impact of fear on visceral hyperalgesia and central sensitization.•Pain-related fear was assessed through two groups of different predictability.•Pain predictability affected neural pain processes and altered associative learning.•During aversive learning, unpredictability amplified pain encoding, and modulation.•Pain-related fear does not promote visceral hyperalgesia or central sensitization.
Journal Article
Stimulation of the Noradrenergic System during Memory Formation Impairs Extinction Learning but not the Disruption of Reconsolidation
by
Kindt, Merel
,
Soeter, Marieke
in
Adolescent
,
Adrenergic alpha-2 Receptor Antagonists - adverse effects
,
Adrenergic beta-Antagonists - adverse effects
2012
The noradrenergic system plays a critical role in the 'consolidation' of emotional memory. If we are to target 'reconsolidation' in patients with anxiety disorders, the noradrenergic strengthening of fear memory should not impair the disruption of reconsolidation. In Experiment I, we addressed this issue using a differential fear conditioning procedure allowing selective reactivation of one of two fear associations. First, we strengthened fear memory by administering an α(2)-adrenergic receptor antagonist (ie, yohimbine HCl; double-blind placebo-controlled study) 30 min before acquisition (time for peak value yohimbine HCl <1 h). Next, the reconsolidation of one of the fear associations was manipulated by administering a β-adrenergic receptor antagonist (ie, propranolol HCl) 90 min before its selective reactivation (time for peak value propranolol HCl <2 h). In Experiment II, we administered propranolol HCl after reactivation of the memory to rule out a possible effect of the pharmacological manipulation on the memory retrieval itself. The excessive release of noradrenaline during memory formation not only delayed the process of extinction 48 h later, but also triggered broader fear generalization. Yet, the β-adrenergic receptor blocker during reconsolidation selectively 'neutralized' the fear-arousing aspects of the noradrenergic-strengthened memory and undermined the generalization of fear. We observed a similar reduction in fear responding when propranolol HCl was administered after reactivation of the memory. The present findings demonstrate the involvement of noradrenergic modulation in the formation as well as generalization of human fear memory. Given that the noradrenergic strengthening of fear memory impaired extinction learning but not the disruption of reconsolidation, our findings may have implications for the treatment of anxiety disorders.
Journal Article