Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
298
result(s) for
"Conjunctiva - cytology"
Sort by:
Histological and immunohistochemical characterization of the porcine ocular surface
by
Diebold, Yolanda
,
Crespo-Moral, Mario
,
García-Posadas, Laura
in
Abattoirs
,
Acids
,
Agglutinins
2020
The ocular surface of the white domestic pig (Sus scrofa domestica) is used as a helpful model of the human ocular surface; however, a complete histological description has yet to be published. In this work, we studied porcine eyeballs with intact eyelids to describe and characterize the different structures that form the ocular surface, including the cornea and conjunctiva that covers the bulbar sclera, tarsi, and the nictitating membrane. We determined the distribution of goblet cells of different types over the conjunctiva and analyzed the conjunctival-associated lymphoid tissue (CALT). Porcine eyeballs were obtained from a local slaughterhouse, fixed, processed, and embedded in paraffin blocks. Tissue sections (4 μm) were stained with hematoxylin/eosin, Alcian blue/Periodic Acid Schiff, and Giemsa. Slides were also stained with lectins from Arachis hypogaea (PNA) and Helix pomatia (HPA) agglutinins and immunostained with rabbit anti-CD3. We found that the porcine cornea was composed of 6-8 epithelial cell layers, stroma, Descemet's membrane, and an endothelial monolayer. The total corneal thickness was 1131.0±87.5 μm (mean±standard error of the mean) in the center and increased to 1496.9±138.2 μm at the limbus. The goblet cell density was 71.25±12.29 cells/mm, ranging from the highest density (113.04±37.21 cells/mm) in the lower palpebral conjunctiva to the lowest density (12.69±4.29 cells/mm) in the bulbar conjunctiva. The CALT was distributed in the form of intraepithelial lymphocytes and subepithelial diffuse lymphoid tissue. Lenticular-shaped lymphoid follicles, about 8 per histological section, were also present within the conjunctival areas. In conclusion, we demonstrated that the analyzed porcine ocular structures are similar to those of humans, confirming the potential usefulness of pig eyes to study ocular surface physiology and pathophysiology.
Journal Article
Cannabidiol inhibits TGF-β1-induced epithelial-mesenchymal transition in human conjunctival epithelial cells by interrupting TGF-β/Smad signaling
2025
Epithelial-mesenchymal transition (EMT) plays a significant role in conjunctival fibrosis-related pathologies and has emerged as a promising therapeutic target for managing conjunctival fibrosis. Cannabidiol (CBD), a predominant non-psychoactive cannabinoid derived from the cannabis plant, has demonstrated antifibrotic effects in various extraorbital tissues. However, its influence on fibrosis-associated EMT in conjunctiva remains unexplored. Given the ubiquitous expression of cannabinoid targets in ocular tissues, including the conjunctiva, and evidence suggesting that modulation of the endocannabinoid system ameliorates ocular pathologies, this study aimed to evaluate the effects of CBD on conjunctival EMT. Cultured human conjunctival epithelial cells were stimulated with transforming growth factor-beta 1 (TGF-β1) to induce EMT. CBD treatment effectively mitigated EMT-related changes induced by TGF-β1, including increased cell elongation and migration, reduced epithelial markers (E-cadherin and zonula occludens-1, and elevated mesenchymal markers (alpha-smooth muscle actin and fibronectin) and EMT-associated transcription factor Snail. Furthermore, CBD suppressed TGF-β1-mediated Smad-2/3 phosphorylation and nuclear translocation. Treatment with a specific TGF-β/Smad pathway inhibitor (SB431542) yielded comparable results, suggesting that the inhibitory effects of CBD on EMT involve disruption of TGF-β/Smad signaling. Additionally, the EMT phenotype was associated with increased interleukin-6 (IL-6) secretion, which was also attenuated by CBD treatment. This study confirms that CBD effectively prevents EMT and EMT-associated IL-6 secretion by targeting TGF-β/Smad signaling, highlighting its therapeutic potential in mitigating conjunctival fibrosis.
Journal Article
Enrichment protocols for human conjunctival extracellular vesicles and their characterization
by
Romero-Castillo, Ismael
,
Diebold, Yolanda
,
López-García, Antonio
in
631/1647/2230/2232
,
631/80
,
692/699/3161/3162
2024
The understanding of the role played by extracellular vesicles (EVs) in different tissues has improved significantly in the last years, but remains limited concerning the conjunctiva, a complex eye tissue whose role is pivotal for corneal protection. Here, we conducted a comparative study to isolate and characterize EVs from human conjunctival epithelial (IM-HConEpiC) and human conjunctival mesenchymal stromal cell (Conj-MSCs) secretomes using different isolation methods: differential ultracentrifugation (UC), and a combination of ultrafiltration (UF) with precipitation or size exclusion chromatography (SEC). EVs were characterized by total protein content, size, morphology, and expression of protein markers. EV functional effect was tested in an in vitro oxidative stress model. We successfully recovered EVs with the three methods, although significantly higher yields were obtained with UF-precipitation. Dynamic light scattering analysis confirmed the presence of nano-sized particles, being UC-isolated EVs larger than those isolated by UF-precipitation and UF-SEC. Atomic Force Microscopy showed EVs with a slightly ellipsoidal morphology. EVs enriched with UF-precipitation method were further analyzed, confirming the expression of Alix, CD63, TSG101, and Syntenin-1 by Western blotting and showing that Conj-MSC-derived EVs significantly reduced oxidative stress on IM-HConEpiC. Therefore, we conclude that UF-precipitation is the most efficient method for conjunctival EV enrichment.
Journal Article
A Tenon’s capsule/bulbar conjunctiva interface biomimetic to model fibrosis and local drug delivery
by
Phillips, James B.
,
Bailly, Maryse
,
Ezra, Daniel G.
in
Animals
,
Biology and Life Sciences
,
Biomimetic Materials
2020
Glaucoma filtration surgery is one of the most effective methods for lowering intraocular pressure in glaucoma. The surgery efficiently reduces intra-ocular pressure but the most common cause of failure is scarring at the incision site. This occurs in the conjunctiva/Tenon's capsule layer overlying the scleral coat of the eye. Currently used antimetabolite treatments to prevent post-surgical scarring are non-selective and are associated with potentially blinding side effects. Developing new treatments to target scarring requires both a better understanding of wound healing and scarring in the conjunctiva, and new means of delivering anti-scarring drugs locally and sustainably. By combining plastic compression of collagen gels with a soft collagen-based layer, we have developed a physiologically relevant model of the sub-epithelial bulbar conjunctiva/Tenon's capsule interface, which allows a more holistic approach to the understanding of subconjunctival tissue behaviour and local drug delivery. The biomimetic tissue hosts both primary human conjunctival fibroblasts and an immune component in the form of macrophages, morphologically and structurally mimicking the mechanical proprieties and contraction kinetics of ex vivo porcine conjunctiva. We show that our model is suitable for the screening of drugs targeting scarring and/or inflammation, and amenable to the study of local drug delivery devices that can be inserted in between the two layers of the biomimetic. We propose that this multicellular-bilayer engineered tissue will be useful to study complex biological aspects of scarring and fibrosis, including the role of inflammation, with potentially significant implications for the management of scarring following glaucoma filtration surgery and other anterior ocular segment scarring conditions. Crucially, it uniquely allows the evaluation of new means of local drug delivery within a physiologically relevant tissue mimetic, mimicking intraoperative drug delivery in vivo.
Journal Article
Goblet Cells Contribute to Ocular Surface Immune Tolerance—Implications for Dry Eye Disease
2017
Conjunctival goblet cell (GC) loss in dry eye is associated with ocular surface inflammation. This study investigated if conjunctival GCs contribute to ocular surface immune tolerance. Antigens applied to the ocular surface, imaged by confocal microscopy, passed into the conjunctival stroma through goblet cell associated passages (GAPs) in wild type C57BL/6 (WT), while ovalbumin (OVA) was retained in the epithelium of SAM pointed domain containing ETS transcription factor (Spdef) knockout mice (Spdef−/−) that lack GCs and are a novel model of dry eye. Stimulated GC degranulation increased antigen binding to GC mucins. Induction of tolerance to topically applied OVA measured by cutaneous delayed type hypersensitivity (DTH) was observed in WT, but not Spdef−/−. OTII CD4+ T cells primed by dendritic cells (DCs) from the conjunctival draining lymph nodes of Spdef−/− had greater IFN-γ production and lower Foxp3 positivity than those primed by WT DCs. These findings indicate that conjunctival GCs contribute to ocular surface immune tolerance by modulating antigen distribution and antigen specific immune response. GC loss may contribute to the abrogation of ocular surface immune tolerance that is observed in dry eye.
Journal Article
Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy
2020
Expansion microscopy (ExM) enables super-resolution imaging of proteins and nucleic acids on conventional microscopes. However, imaging of details of the organization of lipid bilayers by light microscopy remains challenging. We introduce an unnatural short-chain azide- and amino-modified sphingolipid ceramide, which upon incorporation into membranes can be labeled by click chemistry and linked into hydrogels, followed by 4× to 10× expansion. Confocal and structured illumination microscopy (SIM) enable imaging of sphingolipids and their interactions with proteins in the plasma membrane and membrane of intracellular organelles with a spatial resolution of 10–20 nm. As our functionalized sphingolipids accumulate efficiently in pathogens, we use sphingolipid ExM to investigate bacterial infections of human HeLa229 cells by
Neisseria gonorrhoeae, Chlamydia trachomatis
and
Simkania negevensis
with a resolution so far only provided by electron microscopy. In particular, sphingolipid ExM allows us to visualize the inner and outer membrane of intracellular bacteria and determine their distance to 27.6 ± 7.7 nm.
Imaging of lipid bilayers using light microscopy is challenging. Here the authors label cells using a short chain click-compatible ceramide to visualize mammalian and bacterial membranes with expansion microscopy.
Journal Article
An In Vitro Model for the Ocular Surface and Tear Film System
2017
Dry eye is a complicated ocular surface disease whose exact pathogenesis is not yet fully understood. For the therapeutic evaluation and pathogenesis study of dry eye, we established an
in vitro
three-dimensional (3D) coculture model for the ocular surface. It is composed of rabbit conjunctival epithelium and lacrimal gland cell spheroids, and recapitulates the aqueous and mucin layers of the tear film. We first investigated the culture conditions for both cell types to optimize their secretory functions, by employing goblet cell enrichment, air-lifting culture, and 3D spheroid formation techniques. The coculture of the two cell components leads to elevated secretion and higher expression of tear secretory markers. We also compared several coculture systems, and found that direct cell contact between the two cell types significantly increased tear secretion. Inflammation was induced to mimic dry eye disease in the coculture model system. Our results showed that the coculture system provides a more physiologically relevant therapeutic response compared to monocultures. Our work provides a complex 3D model as a recapitulation of the ocular surface and tear film system, which can be further developed as a model for dry eye disease and therapeutic evaluation.
Journal Article
Influence of Light Emitting Diode-Derived Blue Light Overexposure on Mouse Ocular Surface
2016
To investigate the influence of overexposure to light emitting diode (LED)-derived light with various wavelengths on mouse ocular surface.
LEDs with various wavelengths were used to irradiate C57BL/6 mice at an energy dose of 50 J/cm2, twice a day, for 10 consecutive days. The red, green, and blue groups represented wavelengths of 630 nm, 525 nm, and 410 nm, respectively. The untouched group (UT) was not exposed to LED light and served as the untreated control. Tear volume, tear film break-up time (TBUT), and corneal fluorescein staining scores were measured on days 1, 3, 5, 7, and 10. Levels of interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were measured in the cornea and conjunctiva using a multiplex immunobead assay at day 10. Levels of malondialdehyde (MDA) were measured with an enzyme-linked immunosorbent assay. Flow cytometry, 2'7'-dichlorofluorescein diacetate (DCF-DA) assay, histologic analysis, immunohistochemistry with 4-hydroxynonenal, and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL) staining were also performed.
TBUT of the blue group showed significant decreases at days 7 and 10, compared with the UT and red groups. Corneal fluorescein staining scores significantly increased in the blue group when compared with UT, red, and green groups at days 5, 7, and 10. A significant increase in the corneal levels of IL-1β and IL-6 was observed in the blue group, compared with the other groups. The blue group showed significantly increased reactive oxygen species production in the DCF-DA assay and increased inflammatory T cells in the flow cytometry. A significantly increased TUNEL positive cells was identified in the blue group.
Overexposure to blue light with short wavelengths can induce oxidative damage and apoptosis to the cornea, which may manifest as increased ocular surface inflammation and resultant dry eye.
Journal Article
Conjunctival Goblet Cell Responses to TLR5 Engagement Promote Activation of Local Antigen-Presenting Cells
by
Logeswaran, Abiramy
,
Contreras-Ruiz, Laura
,
Masli, Sharmila
in
Aldehydes
,
Animals
,
Antigen Presentation
2021
Conjunctival epithelium forms a barrier between the ocular surface microbial flora and the ocular mucosa. In addition to secreting gel-forming mucins, goblet cells, located in the conjunctival epithelium, help maintain local immune homeostasis by secreting active TGFβ2 and promoting tolerogenic phenotype of dendritic cells in the vicinity. Although dendritic cell subsets, characteristic of mucosal tissues, are found in the conjunctiva, previous studies provided limited information about their location within the tissue. In this study, we examine immunostained conjunctiva explants to determine the location of CD11c-positive dendritic cells in the context of MUC5AC-positive goblet cells. Considering that conjunctival goblet cells are responsive to signaling induced by pathogen recognition receptors, we also assess if their responses to microbial product, flagellin, can contribute to the disruption of ocular mucosal homeostasis that promotes activation of dendritic cells and results in chronic ocular surface inflammation. We find that dendritic cells in the conjunctiva with an increased microbial colonization are located adjacent to goblet cells. While their cell bodies in the stromal layer are immediately below the epithelial layer, several extensions of dendritic cells are projected across the epithelium towards the ocular surface. Such trans-epithelial dendrites are not detectable in healthy ocular mucosa. In response to topically applied flagellin, increased proportion of CD11c-positive cells in the conjunctiva strongly express MHC class II relative to the untreated conjunctiva. This change is accompanied by reduced immunoreactivity to TGFβ-activating Thrombospondin-1 in the conjunctival epithelium. These findings are supported by in vitro observations in primary cultures of goblet cells that respond to the TLR5 stimulation with an increased expression of IL-6 and reduced level of active TGFβ. The observed changes in the conjunctiva after flagellin application correspond with the development of clinical signs of chronic ocular mucosal inflammation including corneal epitheliopathy. Collectively, these findings demonstrate the ability of ocular mucosal dendritic cells to extend trans-epithelial dendrites in response to increased microbial colonization at the ocular surface. Moreover, this study provides key insight into how goblet cell responses to microbial stimuli may contribute to the disruption of ocular mucosal homeostasis and chronic ocular mucosal inflammation.
Journal Article
The new bilastine eye drop formulation protects against conjunctival dehydration and promotes corneal wound healing in a comparative in vitro study
by
Andollo, Noelia
,
Goñi-de-Cerio, Felipe
,
Gómez-Fernández, Paloma
in
692/308/2778
,
692/699/3161/3162
,
Animals
2025
Bilastine is a non-sedating, highly selective H1-antihistamine with proven efficacy and safety in treating allergic rhinoconjunctivitis and urticaria in adults and children. Allergic conjunctivitis, a common ocular condition, negatively impacts quality of life. Topical eye drops are the standard treatment, though ocular bioavailability is often low. Incorporating biopolymers such as hyaluronic acid (HA) into topical formulations enhances adhesive properties, prolongs retention on the ocular surface, and ultimately improves drug bioavailability. This study evaluated the new multidose preservative-free bilastine 0.6% solution with sodium HA against eight commercially available antiallergic eye drops. Using an ex vivo bovine cornea model, bilastine 0.6% demonstrated the highest bioadhesion strength (0.025 mJ), indicating superior retention on the ocular surface. It also showed strong protective effects against in vitro dehydration, mainly due to the presence of HA, and did not exhibit cytotoxicity in human primary conjunctival cells. In wound healing assays, preservative-free ketotifen 0.025%, bilastine 0.6%, and azelastine 0.05% promoted corneal wound repair at 72 h, outperforming preserved formulations. Overall, preservative-free bilastine 0.6% with HA enhances corneal hydration, retention, and re-epithelialization in vitro, suggesting potential benefits for the management of allergic conjunctivitis and offering promising advancements in treating this widespread condition.
Journal Article