Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,244
result(s) for
"Continental interfaces, environment"
Sort by:
Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic
2020
The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO
2
) emissions. Here we present daily estimates of country-level CO
2
emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO
2
emissions (−1551 Mt CO
2
) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.
The COVID-19 pandemic has stopped many human activities, which has had significant impact on emissions of greenhouse gases. Here, the authors present daily estimates of country-level CO
2
emissions for different economic sectors and show that there has been a 8.8% decrease in global CO2 emissions in the first half of 2020.
Journal Article
The human imperative of stabilizing global climate change at 1.5°C
by
Taylor, M.
,
Engelbrecht, F.
,
Mehrotra, S.
in
Agreements
,
Agricultural economics
,
Agricultural ecosystems
2019
Climate change will be the greatest threat to humanity and global ecosystems in the coming years, and there is a pressing need to understand and communicate the impacts of warming, across the perspectives of the natural and social sciences. Hoegh-Guldberg
et al.
review the climate change–impact literature, expanding on the recent report of the Intergovernmental Panel on Climate Change. They provide evidence of the impacts of warming at 1°, 1.5°, and 2°C—and higher—for the physical system, ecosystems, agriculture, and human livelihoods. The benefits of limiting climate change to no more than 1.5°C above preindustrial levels would outweigh the costs.
Science
, this issue p.
eaaw6974
Increased concentrations of atmospheric greenhouse gases have led to a global mean surface temperature 1.0°C higher than during the pre-industrial period. We expand on the recent IPCC Special Report on global warming of 1.5°C and review the additional risks associated with higher levels of warming, each having major implications for multiple geographies, climates, and ecosystems. Limiting warming to 1.5°C rather than 2.0°C would be required to maintain substantial proportions of ecosystems and would have clear benefits for human health and economies. These conclusions are relevant for people everywhere, particularly in low- and middle-income countries, where the escalation of climate-related risks may prevent the achievement of the United Nations Sustainable Development Goals.
Journal Article
Atmospheric dryness reduces photosynthesis along a large range of soil water deficits
by
Makowski, David
,
Bastos, Ana
,
Gentine, Pierre
in
631/158/2445
,
631/158/47/4113
,
631/45/47/4113
2022
Both low soil water content (SWC) and high atmospheric dryness (vapor pressure deficit, VPD) can negatively affect terrestrial gross primary production (GPP). The sensitivity of GPP to soil versus atmospheric dryness is difficult to disentangle, however, because of their covariation. Using global eddy-covariance observations, here we show that a decrease in SWC is not universally associated with GPP reduction. GPP increases in response to decreasing SWC when SWC is high and decreases only when SWC is below a threshold. By contrast, the sensitivity of GPP to an increase of VPD is always negative across the full SWC range. We further find canopy conductance decreases with increasing VPD (irrespective of SWC), and with decreasing SWC on drier soils. Maximum photosynthetic assimilation rate has negative sensitivity to VPD, and a positive sensitivity to decreasing SWC when SWC is high. Earth System Models underestimate the negative effect of VPD and the positive effect of SWC on GPP such that they should underestimate the GPP reduction due to increasing VPD in future climates.
Using global flux tower observations, the authors show that atmospheric dryness always reduces photosynthesis, whereas soil dryness can increase photosynthesis if soil water stores are sufficient.
Journal Article
FLUXNET-CH₄ SYNTHESIS ACTIVITY
by
Kang, Minseok
,
Oechel, Walter C.
,
Cescatti, Alessandro
in
Air temperature
,
Atmosphere
,
Atmospheric models
2019
This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH₄) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH₄ flux measurements globally, initial results comparing CH₄ fluxes across the sites, and future research directions and needs. Annual estimates of net CH₄ fluxes across sites ranged from −0.2 ± 0.02 g C m−2 yr−1 for an upland forest site to 114.9 ± 13.4 g C m−2 yr−1 for an estuarine freshwater marsh, with fluxes exceeding 40 g C m−2 yr−1 at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH₄ flux across wetland sites globally. Water table position was positively correlated with annual CH₄ emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH₄ fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH₄ estimates due to gap-filling and random errors were on average ±1.6 g C m−2 yr−1 at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH₄ flux database, the controls on ecosystem CH₄ fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH₄ emissions.
Journal Article
ISMIP6 Antarctica: A Multi-Model Ensemble of the Antarctic Ice Sheet Evolution Over the 21st Century
by
Breedam, Jonas Van
,
Little, Chistopher M
,
Pelle, Tyler
in
21st century
,
Analysis
,
Antarctic ice sheet
2020
Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between -7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica ass change varies between -6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.
Journal Article
AeroCom Phase III Multi-Model Evaluation of the Aerosol Life Cycle and Optical Properties Using Ground and Space-Based Remote Sensing as Well as Surface In Situ Observations
by
Olivie, Dirk J L
,
Laj, Paolo
,
Griesfeller, Jan J
in
Aerosol effects
,
Aerosol models
,
Aerosol optical depth
2021
Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi-model ensemble. Inter-model spread of aerosol species lifetimes and emissions appears to be similar to that of mass extinction coefficients (MECs), suggesting that aerosol optical depth (AOD) uncertainties are associated with a broad spectrum of parameterised aerosol processes.
Total AOD is approximately the same as in AeroCom phase I (AP1) simulations. However, we find a 50 % decrease in the optical depth (OD) of black carbon (BC), attributable to a combination of decreased emissions and lifetimes. Relative contributions from sea salt (SS) and dust (DU) have shifted from being approximately equal in AP1 to SS contributing about 2∕3 of the natural AOD in AP3. This shift is linked with a decrease in DU mass burden, a lower DU MEC, and a slight decrease in DU lifetime, suggesting coarser DU particle sizes in AP3 compared to AP1.
Relative to observations, the AP3 ensemble median and most of the participating models underestimate all aerosol optical properties investigated, that is, total AOD as well as fine and coarse AOD (AODf, AODc), Ångström exponent (AE), dry surface scattering (SCdry), and absorption (ACdry) coefficients. Compared to AERONET, the models underestimate total AOD by ca. 21 % ± 20 % (as inferred from the ensemble median and interquartile range). Against satellite data, the ensemble AOD biases range from −37 % (MODIS-Terra) to −16 % (MERGED-FMI, a multi-satellite AOD product), which we explain by differences between individual satellites and AERONET measurements themselves. Correlation coefficients (R) between model and observation AOD records are generally high (R>0.75), suggesting that the models are capable of capturing spatio-temporal variations in AOD. We find a much larger underestimate in coarse AODc (∼ −45 % ± 25 %) than in fine AODf (∼ −15 % ± 25 %) with slightly increased inter-model spread compared to total AOD. These results indicate problems in the modelling of DU and SS. The AODc bias is likely due to missing DU over continental land masses (particularly over the United States, SE Asia, and S. America), while marine AERONET sites and the AATSR SU satellite data suggest more moderate oceanic biases in AODc.
Column AEs are underestimated by about 10 % ± 16 %. For situations in which measurements show AE > 2, models underestimate AERONET AE by ca. 35 %. In contrast, all models (but one) exhibit large overestimates in AE when coarse aerosol dominates (bias ca. +140 % if observed AE < 0.5). Simulated AE does not span the observed AE variability. These results indicate that models overestimate particle size (or underestimate the fine-mode fraction) for fine-dominated aerosol and underestimate size (or overestimate the fine-mode fraction) for coarse-dominated aerosol. This must have implications for lifetime, water uptake, scattering enhancement, and the aerosol radiative effect, which we can not quantify at this moment.
Comparison against Global Atmosphere Watch (GAW) in situ data results in mean bias and inter-model variations of −35 % ± 25 % and −20 % ± 18 % for SCdry and ACdry, respectively. The larger underestimate of SCdry than ACdry suggests the models will simulate an aerosol single scattering albedo that is too low. The larger underestimate of SCdry than ambient air AOD is consistent with recent findings that models overestimate scattering enhancement due to hygroscopic growth. The broadly consistent negative bias in AOD and surface scattering suggests an underestimate of aerosol radiative effects in current global aerosol models.
Considerable inter-model diversity in the simulated optical properties is often found in regions that are, unfortunately, not or only sparsely covered by ground-based observations. This includes, for instance, the Sahara, Amazonia, central Australia, and the South Pacific. This highlights the need for a better site coverage in the observations, which would enable us to better assess the models, but also the performance of satellite products in these regions.
Using fine-mode AOD as a proxy for present-day aerosol forcing estimates, our results suggest that models underestimate aerosol forcing by ca. −15 %, however, with a considerably large interquartile range, suggesting a spread between −35 % and +10 %.
Journal Article
Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 and in situ data and comparison to OCO-2 version 7
by
S. Basu
,
I. Baker
,
J. Liu
in
[SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment
,
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
,
[SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere
2022
The Orbiting Carbon Observatory 2 (OCO-2) satellite has been providing information to estimate carbon dioxide (CO2) fluxes at global and regional scales since 2014 through the combination of CO2 retrievals with top–down atmospheric inversion methods. Column average CO2 dry-air mole fraction retrievals have been constantly improved. A bias correction has been applied in the OCO-2 version 9 retrievals compared to the previous OCO-2 version 7r improving data accuracy and coverage. We study an ensemble of 10 atmospheric inversions all characterized by different transport models, data assimilation algorithms, and prior fluxes using first OCO-2 v7 in 2015–2016 and then OCO-2 version 9 land observations for the longer period 2015–2018. Inversions assimilating in situ (IS) measurements have also been used to provide a baseline against which the satellite-driven results are compared. The time series at different scales (going from global to regional scales) of the models emissions are analyzed and compared to each experiment using either OCO-2 or IS data. We then evaluate the inversion ensemble based on the dataset from the Total Carbon Column Observing Network (TCCON), aircraft, and in situ observations, all independent from assimilated data. While we find a similar constraint of global total carbon emissions between the ensemble spread using IS and both OCO-2 retrievals, differences between the two retrieval versions appear over regional scales and particularly in tropical Africa. A difference in the carbon budget between v7 and v9 is found over this region, which seems to show the impact of corrections applied in retrievals. However, the lack of data in the tropics limits our conclusions, and the estimation of carbon emissions over tropical Africa require further analysis.
Journal Article
Convergence in phosphorus constraints to photosynthesis in forests around the world
by
Weerasinghe, K. W. Lasantha K.
,
Ichie, Tomoaki
,
Sun, Yan
in
704/158/2455
,
704/47/4113
,
Atmospheric models
2022
Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models. Here we demonstrate the dependence of photosynthesis and underlying processes on both leaf N and P concentrations. The regulation of photosynthetic capacity by P was similar across four continents. Implementing P constraints in the ORCHIDEE-CNP model, gross photosynthesis was reduced by 36% across the tropics and subtropics relative to traditional N constraints and unlimiting leaf P. Our results provide a quantitative relationship for the P dependence for photosynthesis for the front-end of global terrestrial C models that is consistent with canopy leaf measurements.
Phosphorus (P) limitation is pervasive in tropical forests. Here the authors analyse the dependence of photosynthesis on leaf N and P in tropical forests, and show that incorporating leaf P constraints in a terrestrial biosphere model enhances its predictive power.
Journal Article
THE GLOBAL N₂O MODEL INTERCOMPARISON PROJECT
by
Ito, Akihiko
,
Tian, Hanqin
,
Jackson, Robert B.
in
Anthropogenic factors
,
Biosphere
,
Biosphere models
2018
Nitrous oxide (N₂O) is an important greenhouse gas and also an ozone-depleting substance that has both natural and anthropogenic sources. Large estimation uncertainty remains on the magnitude and spatiotemporal patterns of N₂O fluxes and the key drivers of N₂O production in the terrestrial biosphere. Some terrestrial biosphere models have been evolved to account for nitrogen processes and to show the capability to simulate N₂O emissions from land ecosystems at the global scale, but large discrepancies exist among their estimates primarily because of inconsistent input datasets, simulation protocol, and model structure and parameterization schemes. Based on the consistent model input data and simulation protocol, the global N₂O Model Intercomparison Project (NMIP) was initialized with 10 state-of-the-art terrestrial biosphere models that include nitrogen (N) cycling. Specific objectives of NMIP are to 1) unravel the major N cycling processes controlling N₂O fluxes in each model and identify the uncertainty sources from model structure, input data, and parameters; 2) quantify the magnitude and spatial and temporal patterns of global and regional N₂O fluxes from the preindustrial period (1860) to present and attribute the relative contributions of multiple environmental factors to N₂O dynamics; and 3) provide a benchmarking estimate of N₂O fluxes through synthesizing the multimodel simulation results and existing estimates from ground-based observations, inventories, and statistical and empirical extrapolations. This study provides detailed descriptions for the NMIP protocol, input data, model structure, and key parameters, along with preliminary simulation results. The global and regional N₂O estimation derived from the NMIP is a key component of the global N₂O budget synthesis activity jointly led by the Global Carbon Project and the International Nitrogen Initiative.
Journal Article
Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models
by
Jones, Chris D.
,
Brovkin, Victor
,
Hajima, Tomohiro
in
Atmosphere
,
Atmospheric models
,
Biogeochemistry
2013
The magnitude and evolution of parameters that characterize feedbacks in the coupled carbon–climate system are compared across nine Earth system models (ESMs). The analysis is based on results from biogeochemically, radiatively, and fully coupled simulations in which CO₂ increases at a rate of 1% yr−1. These simulations are part of phase 5 of the Coupled Model Intercomparison Project (CMIP5). The CO₂ fluxes between the atmosphere and underlying land and ocean respond to changes in atmospheric CO₂ concentration and to changes in temperature and other climate variables. The carbon–concentration and carbon–climate feedback parameters characterize the response of the CO₂ flux between the atmosphere and the underlying surface to these changes. Feedback parameters are calculated using two different approaches. The two approaches are equivalent and either may be used to calculate the contribution of the feedback terms to diagnosed cumulative emissions. The contribution of carbon–concentration feedback to diagnosed cumulative emissions that are consistent with the 1% increasing CO₂ concentration scenario is about 4.5 times larger than the carbon–climate feedback. Differences in the modeled responses of the carbon budget to changes in CO₂ and temperature are seen to be 3–4 times larger for the land components compared to the ocean components of participating models. The feedback parameters depend on the state of the system as well the forcing scenario but nevertheless provide insight into the behavior of the coupled carbon–climate system and a useful common framework for comparing models.
Journal Article