Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,429 result(s) for "Continuous rolling"
Sort by:
Research on the impact of mandrels in titanium tubes during tube continuous rolling
Tube continuous rolling (TCR) is a beneficial method for the production of titanium pipes due to its high efficiency and shorter process, with the mandrel playing a crucial role. The present study delved into the mechanism of the mandrel and its impact on the TCR process, through comprehensive analyses that included numerical simulations and experimental tests. The following conclusions were drawn: as the mandrel diameter coefficient increases, the area of the front slip zone gradually expands, and the tension changes from tensile stress to compressive stress. Additionally, the temperature exhibited an overall downward trend, while the strain distribution at the groove vertex and taper became more uneven. Concerning metallographic structure, instances where the mandrel diameter coefficient increases led to elongated, recrystallized grains at the groove vertex. The twinning quantity at the groove taper increased initially and then decreased, indicating a deformation mechanism shift from twinning to slip.
Continuous rolling motion of a disk on a vibrating plate
We studied the behavior of the continuous rolling motion (CRM) of a disk placed on a vibrating plate observed in the experiment using numerical simulations. Numerical simulations show that a rolling disk on a vibrating plate abruptly stops in case of pure rolling without slipping, whereas CRM occurs in the case of slipping. CRM occurs in two frequency bands separated by a gap. We use numerical simulations to determine the gap and the frequency domains for different values of the coefficient of sliding friction. The characteristics of rolling motion depend on the coefficient of slip friction and frequency of vibration.
Simulation of Hot Continuous Rolling of a Plain Carbon Steel Using the MAXStrain II® Multi-Axis Deformation System
A simple methodology was used for calculating the equivalent strain values during forming the sample alternately in two mutually perpendicular directions. This method reflects an unexpected material flow out of the nominal deformation zone when forming on the MAXStrain II device. Thus it was possible to perform two temperature variants of the simulation of continuous rolling and cooling of a long product made of steel containing 0.17% C and 0.80% Mn. Increasing the finishing temperature from 900°C to 950°C and decreasing the cooling rate from 10°C/s to 5°C/s led to a decrease in the content of acicular ferrite and bainite and an increase in the mean grain size of proeutectoid ferrite from about 8 µm to 14 µm. The result was a change in the hardness of the material by 15%.
Effects of Heat-Treatment and Cold-Rolling on Mechanical Properties and Impact Failure Resistance of New Al 6082 Aluminum Alloy by Continuous Casting Direct Rolling Process
Al 6082 aluminum alloy has excellent corrosion resistance, strength, and formability. However, owing to the recrystallization effect of a hot working process, coarse grains form easily in this material, which reduces its strength and service life. The novel continuous casting direct rolling (CCDR) method can prevent the deterioration of this material. Thus, we used CCDR Al 6082 aluminum alloy as the research material in this study. By subjecting a CCDR Al 6082 aluminum alloy to heat treatment (T4 and T6) and cold rolling, the influence of recrystallization effect on its mechanical properties and on impact failure resistance were explored. The results demonstrated that the specimen subjected to T4 heat treatment had a higher elongation and that the specimen subjected to T6 heat treatment had a higher strength. After cold rolling, the hardness and strength of the specimens subjected to different heat treatments (coded T4R4 and T6R4) increased because of the work’s hardening effect. Moreover, the elongations of both specimens decreased, but they were higher than the industrial standard (>10%). The strength of specimen T6R4 was higher (up to 400 MPa) than specimen T4R4. Moreover, relative to specimen T4R4, specimen T6R4 had greater tensile and Charpy impact failure toughness.
New Analytical Model for Determining the Roll Pitch Diameter in Three-Roll Continuous Retained Mandrel Rolling
The continuous tube-rolling method has been widely used to manufacture high-quality seamless pipes and tubes. However, the analytical model for determining the roll pitch diameter in three-roll continuous retained mandrel rolling from first principles has not yet been presented, which has, thus, hindered the development of rolling control technology in tube manufacturing. In this work, a new analytical model has been established from the force–equilibrium principles. The modelling has taken the tube-roll contact geometry, roll pressure, mandrel pull forces, inter-stand tensions, and friction coefficients into account for its formulations. Seen from the experimental results of the rolling at the plant, the maximum deviation of the predicted projected contact area is less than 6% and the maximum deviation of the calculated roll speed from the satisfactory data in field operation is less than 3.9%. The proposed model has enabled the influence of the friction coefficients on the roll pitch diameter to be quantified in theoretical analysis, and it was found that the changing amplitude of the theoretical roll pitch diameter corresponding to the commonly used data range of the friction coefficients can be above 9%. Having overcome the shortcomings of the empirical model, this model has the required prediction accuracy and flexibility for being applied to flexible tube rolling. By building the key algorithms around physical models, this modelling has advanced not only the rolling control at the plant, but also our scientific understanding of the mechanics of the continuous tube-rolling process.
Effect of High Temperature and Thermal Cycle of 4043 Al Alloy Manufactured through Continuous Casting Direct Rolling
CCDR 4043 Al alloys are an outstanding candidate for producing mechanical components for automotive or aircraft engines. Two experimental environments—sustained high temperature and repeated heating–cooling—were simulated in the laboratory to replicate the actual operating conditions of engine components. This research investigated the microstructural evolution, mechanical properties, and fracture characteristics of the 4043 Al alloy manufactured through the continuous casting direct rolling (CCDR) process under different post-processing conditions. The CCDR process combines continuous casting, billet heating, and subsequent continuous rolling in a single equipment of production line, enabling the mass production of Al alloy in a cost-effective and energy-efficient manner. In the present work, the 4043 alloy was subjected to two environmental conditions: a sustained high-temperature environment (control group) and a cyclic heating–cooling environment (experimental group). The maximum temperature was set to 200 °C in the experiment. The experimental results show that, in a sustained high temperature working environment, the strength and elongation of the CCDR 4043 Al alloy tend to be stable. The overall effect involves the Al matrix softening and the spheroidization of eutectic Si caused by prolonged exposure to high temperature. This can enhance its ductility while retaining a certain level of mechanical strength. Comparatively, in the working environment of cyclic heating–cooling (thermal cycle), the direction of Si diffusion was different in each cycle, thus leading to the formation of an irregular Ai–Si eutectic structure containing precipitated Si particles of different sizes. The two compositions of Al and Si with very different thermal expansion coefficients may induce defects at the sharp points of Si particles under repeated heating–cooling, thereby reducing the strength and ductility of the material. The results of this work can confirm that the fracture behavior of 4043 Al alloys is obviously controlled by the morphology of the precipitated eutectic Si. In addition, CCDR 4043 Al alloys are not suitable to be used in working environments with a thermal cycle. In practical applications, it is necessary to add traces of special elements or to employ other methods to achieve the purpose of spheroidizing the precipitated eutectic Si and Al–Fe–Si phases to avoid the deterioration of strength and ductility under cyclic heating. To date, no other literature has explored the changes in the microstructure and mechanical properties of CCDR 4043 Al alloys across various time scales under the aforementioned working environments. In summary, the findings provide valuable insights into the effect of thermal conditions on the properties and behavior of CCDR 4043 Al alloys, offering potential applications for it in various engineering fields, such as the automotive and aerospace industries.
Numerical simulation of continuous hot rolling process for ultra-thick SiCp/2009Al composites plate
In order to investigate the continuous hot rolling behavior of SiCp/2009Al composites, a thermo-mechanical coupling finite element model was developed in this paper. The accuracy of the results can be confirmed by comparing the simulation results of rolled plate length with the experimental data. The effects of rolling process parameters on temperature, stress, and deformation of the rolled plate during rolling were investigated and verified with the existing literature. The results show that when the initial rolling temperature rises, the temperature difference between the surface and the center points of the rolled plate increases from 9.2 to 13.8 °C. As the friction coefficient increases, the residual stress at the center point gradually decreases, and the rolling force and its fluctuations increase. Additionally, an increase in the time interval during the rolling process leads to a decrease in the maximum temperature at the center. A notable increase in residual stress is observed from the middle to the center path, with a more uniform distribution. The maximum value of residual stress reaches approximately 45 MPa. The results of this paper provide a good theoretical reference for the practical production of SiCp/2009Al composites by continuous hot rolling.
Effect of asymmetry forming technology on longitude curvature radius of 3D curved part in continuous flexible rolling process
Continuous flexible rolling is a novel plastic forming process for 3D curved parts. In this work, asymmetry forming technology was firstly applied in continuous flexible rolling process, which can effectively compensate the lack of longitude bending deformation caused by work hardening. In the process of asymmetry forming technology, by changing the relative longitude elongation between the tensile surface and compressive surface of the sheet metal, the adjusting of longitudinal bending deformation is achieved. In this paper, the finite element model with different friction ratio was designed; the effect of asymmetry forming technology on longitude curvature radius of 3D curved parts was studied. As results demonstrate that: When the friction ratio between the upper (compressive) and lower (tensile) surface are 0.2:0.2, 0.2:0.15, 0.2:0.10, 0.2:0.05 and 0.2:0.2, 0.15:0.2, 0.10:0.2, 0.05:0.2 in turn, the corresponding longitude curvature radiuses of convex curved parts are 226 mm, 236 mm, 254 mm, 272 mm and 226 mm, 219 mm, 207 mm, 199 mm in turn. When the friction ratio between the upper (tensile) and lower (compressive) surface are 0.2:0.2, 0.2:0.16, 0.2:0.12, 0.2:0.08 and 0.2:0.2, 0.16:0.2, 0.12:0.2, 0.08:0.2 in turn, the corresponding longitude curvature radius of saddle curved parts are 330 mm, 321 mm, 315 mm, 306 mm and 330 mm, 339 mm, 345 mm, 350 mm in turn. The longitude bending deformation of sheet metal can be effectively adjusted in the asymmetry forming technology, so the feasibility of this technology is verified.
Theoretical and experimental investigation of an ultrathin optical polymer light guide plate during continuous injection direct rolling
Considering the influence of heat radiation, heat conduction, and plastic deformation, a novel temperature model of the injection-rolling zone during continuous injection direct rolling (CIDR) was developed through a mathematical analysis method. Numerical simulations based on the novel temperature model in the injection-rolling zone were performed under different injection temperatures, injection speeds, roller temperatures, roller speeds, and exit plate thicknesses. The novel temperature model was validated with actual CIDR experiments. The results showed that the polymer flow in the injection-rolling zone was laminar, and the injection speed and roller temperature had a substantial influence on the exit temperature of injection-rolling. The temperatures obtained through numerical simulations based on the novel temperature model were highly consistent with the measured temperatures with an average error of 2.4%. The microstructure ultrathin polymethyl methacrylate (PMMA) light guide plate with superior performance was manufactured through a CIDR experiment. The average height replication rate of microstructures with the aspect ratio 1:3 was 93.34%, and the average width replication rate was 101.13%. The average light transmittance was 88.32%, and the average reflectance was 8.7%.
CALPHAD-Assisted Analysis of Fe-Rich Intermetallics and Their Effect on the Mechanical Properties of Al-Fe-Si Sheets via Continuous Casting and Direct Rolling
As an eco-efficient short-process manufacturing technique for aluminum alloys, twin-belt continuous casting and direct rolling (TBCCR) demonstrates significant production advantages. In this study, an Al-Fe-Si alloy system with different Fe-rich intermetallics (α-AlFe(Mn)Si and β-AlFe(Mn)Si) via TBCCR was developed for new energy vehicle batteries, utilizing the Computer Coupling of Phase Diagrams and Thermochemistry (CALPHAD) technique. Comprehensive microstructure and surface segregation analyses of continuous casted ingots and direct-rolled sheets revealed that the Al-Fe-Si alloy with a combined Fe + Si content of 0.7% and an optimal Fe/Si atomic ratio of 3:1 (FS31) presents optimized mechanical properties: ultimate tensile strength of 145.8 MPa, elongation to failure of 5.7%, accompanied by a cupping value of 6.64 mm. Notably, Mn addition further refined the grain structure of casting ingots and enhanced the strength of both ingots and rolled sheets. Among the experimental alloys, FS14 (optimal Fe/Si atomic ratio of 1:4) sheets displayed the least surface segregation upon Mn incorporation. Through systematic optimization, an Al-Fe-Si-Mn alloy composition (Fe + Si = 0.7%, Fe/Si = 1:4 atomic ratio, 0.8 wt.% Mn) was engineered for TBCCR processing, achieving enhanced comprehensive performance: ultimate tensile strength of 189.4 MPa, elongation to failure of 7.32%, and cupping value of 7.71 mm. This composition achieves an optimal balance between grain refinement, mechanical properties (strength–plasticity synergy), formability (cupping value), and corrosion resistance (corrosion current density). The performance optimization strategy integrates synergistic improvements in strength, ductility, and corrosion resistance, providing valuable guidance for developing high-performance aluminum alloys suitable for the TBCCR process.