Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
31,872 result(s) for "Control, Robotics, Mechatronics"
Sort by:
Proceedings of Congress on Control, Robotics, and Mechatronics : CRM 2023
High-quality research papers presented at the International Conference of Mechanical and Robotic Engineering 'Congress on Control, Robotics, and Mechatronics' (CRM 2023), jointly organised by Modi Institute of Technology, Kota, India, and Soft Computing Research Society, India, during 25-26 March 2023.
Deep reinforcement learning methods for structure-guided processing path optimization
A major goal of materials design is to find material structures with desired properties and in a second step to find a processing path to reach one of these structures. In this paper, we propose and investigate a deep reinforcement learning approach for the optimization of processing paths. The goal is to find optimal processing paths in the material structure space that lead to target-structures, which have been identified beforehand to result in desired material properties. There exists a target set containing one or multiple different structures, bearing the desired properties. Our proposed methods can find an optimal path from a start structure to a single target structure, or optimize the processing paths to one of the equivalent target-structures in the set. In the latter case, the algorithm learns during processing to simultaneously identify the best reachable target structure and the optimal path to it. The proposed methods belong to the family of model-free deep reinforcement learning algorithms. They are guided by structure representations as features of the process state and by a reward signal, which is formulated based on a distance function in the structure space. Model-free reinforcement learning algorithms learn through trial and error while interacting with the process. Thereby, they are not restricted to information from a priori sampled processing data and are able to adapt to the specific process. The optimization itself is model-free and does not require any prior knowledge about the process itself. We instantiate and evaluate the proposed methods by optimizing paths of a generic metal forming process. We show the ability of both methods to find processing paths leading close to target structures and the ability of the extended method to identify target-structures that can be reached effectively and efficiently and to focus on these targets for sample efficient processing path optimization.
Springer handbook of robotics
The second edition of this handbook provides a state-of-the-art overview on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains.
Advances in statistical control, algebraic systems theory, and dynamic systems characteristics : a tribute to Michael K. Sain
Dedicated to Michael K. Sain, this volume is a collection of invited chapters covering advances in stochastic optimal control theory and algebraic systems theory. It is ideal for use as a supplementary textbook in a graduate course on optimal control or algebraic systems theory.
Handbook of modern sensors : physics, designs, and applications
This book presents a comprehensive and up-to-date account of the theory (physical principles), design, and practical implementations of various sensors for scientific, industrial, and consumer applications.This latest edition focuses on the sensing technologies driven by the expanding use of sensors in mobile devices.
Design and Analysis of Control Systems
This book provides methods to unify different approaches to tackle stability theory problems. In particular, it presents a methodology to blend approaches obtained from measure theory with methods obtained from Lyapunov's stability theory. The author summarizes recent works on how different analysis/design methods can be unified and employed for systems that do not belong to either of domains of validity.
Human Subject Research for Engineers
This Brief introduces engineers to the main principles in ethics, research design, statistics, and publishing of human subject research. In recent years, engineering has become strongly connected to disciplines such as biology, medicine, and psychology. Often, engineers (and engineering students) are expected to perform human subject research. Typical human subject research topics conducted by engineers include human-computer interaction (e.g., evaluating the usability of software), exoskeletons, virtual reality, teleoperation, modelling of human behaviour and decision making (often within the framework of 'big data' research), product evaluation, biometrics, behavioural tracking (e.g., of work and travel patterns, or mobile phone use), transport and planning (e.g., an analysis of flows or safety issues), etc. Thus, it can be said that knowledge on how to do human subject research is indispensable for a substantial portion of engineers. Engineers are generally well trained in calculus and mechanics, but may lack the appropriate knowledge on how to do research with human participants. In order to do high-quality human subject research in an ethical manner, several guidelines have to be followed and pitfalls have to be avoided. This book discusses these guidelines and pitfalls. The aim is to prepare engineers and engineering students to carry out independent research in a responsible manner.
Digital Control Systems
The great advances made in large-scale integration of semiconductors and the resulting cost-effective digital processors and data storage devices determine the present development of automation. The application of digital techniques to process automation started in about 1960, when the first process computer was installed. From about 1970 process computers with cathodic ray tube display have become standard equipment for larger automation systems. Until about 1980 the annual increase of process computers was about 20 to 30%. The cost of hardware has already then shown a tendency to decrease, whereas the relative cost of user software has tended to increase. Because of the high total cost the first phase of digital process automation is characterized by the centralization of many functions in a single (though sometimes in several) process computer. Application was mainly restricted to medium and large processes. Because of the far-reaching consequences of a breakdown in the central computer parallel standby computers or parallel back-up systems had to be provided. This meant a substantial increase in cost. The tendency to overload the capacity and software problems caused further difficulties. In 1971 the first microprocessors were marketed which, together with large-scale integrated semiconductor memory units and input/output modules, can be assem­ bled into cost-effective microcomputers. These microcomputers differ from process computers in fewer but higher integrated modules and in the adaptability of their hardware and software to specialized, less comprehensive tasks.
Modern inertial technology : navigation, guidance, and control
Mechanical Engineering, an engineering discipline borne of the needs of the in­ dustrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of pro­ ductivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series features graduate texts and research mono­ graphs intended to address the need for information in contemporary areas of me­ chanical engineering. The series is conceived as a comprehensive one that covers a broad range of concentrations important to mechanical engineering graduate education and re­ search. We are fortunate to have a distinguished roster of consulting editors on the advisory board, each an expert in one of the areas of concentration. The names of the consulting editors are listed on the next page of this volume. The areas of concentration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics, mechanics of materials, processing, ther­ mal science, and tribology. I am pleased to present this volume in the Series: Modern Inertial Technology: Navigation, Guidance, and Control, Second Edition, by Anthony Lawrence. The selection of this volume underscores again the interest of the Mechanical Engi­ neering series to provide our readers with topical monographs as well as graduate texts in a wide variety of fields.
Set-theoretic methods in control
This monograph describes basic set-theoretic methods for control. The work presents several established and potentially new applications, along with numerical examples and case studies. The book supplies many recipes for solving significant problems.