Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,117 result(s) for "Convection cooling"
Sort by:
3D Numerical Simulation of Turbulent Mixed Convection in a Cubical Cavity Containing a Hot Block
The considerable quantities of heat transfer are dissipated during the operating electronic/electrical systems and have harmful effects on the operating time. So; to keep these systems in good working condition, the location of efficient mechanical cooling systems is essential. The heat transfer rate in an enclosure intensely depends on the combination of geometrical and physical parameters. For this purpose, a 3D Numerical simulation of turbulent mixed convection in a cubical cavity containing an internal heat source in its middle was carried out. The cavity has an inlet port at the lower left face area and an outlet port located in the upper right face area. The analyses are performed for air at ambient circumstances (Pr = 0.71) and the variation of interval for Richardson number (Ri) is chosen between 0.01 and 30 to investigate three situations: dominated forced convection, natural convection, and mixed convection for a fixed dimension of the enclosure in turbulent regimes (Gr = 109). The effects of the variation of Ri, the dimensionless time, and the dynamic parameters on the thermal flow and fluid flow phenomena are presented and discussed. The obtained results show an exchange between the forces of pressure and of buoyancy in the studied interval and a strong dependence between the geometrical parameters and the heat transfer rate, and then the correlations of the combination of the parameters were proposed.
Experimental Study of Composite Heat Pipe Radiator in Thermal Management of Electronic Components
Conventional straight fin (SF) radiators have difficulties meeting the cooling requirements of high-power electronic components. Therefore, based on the structure and technology of the detachable fin radiator, this paper proposes a kind of radiator embedded in the heat pipe base and uses the roll-bond flat heat pipe (RBFHP) to replace the traditional fin. The radiator has the advantages of modularity, easy manufacturing, low cost and good heat balance. In this study, the heat pipes (HPs)-RBFHPs radiator was tested in natural convection and forced convection to mimic the actual application scenario and compared with the conventional aluminum radiator. Heating power, angle, wind speed and other aspects were studied. The results showed that the cooling performance of the HPs-RBFHPs radiator was improved by 10.7% to 55% compared with that of the SF radiator under different working conditions. The minimum total thermal resistance in the horizontal state was only 0.37 °C/W. The temperature equalization of the base played a dominant role in the performance of the radiator at a large angle, and the fin group could be ineffective when the angle was greater than 60°. Under the most economical conditions with an inclination of 0° and a wind speed of 2 m/s, the input power was 340 W, the heat source temperature of the HPs-RBFHPs was only 64.2 °C, and the heat dissipation performance was 55.4% higher than that of SFs.
Bilinear Control of Convection-Cooling: From Open-Loop to Closed-Loop
This paper is concerned with a bilinear control problem for enhancing convection-cooling via an incompressible velocity field. Both optimal open-loop control and closed-loop feedback control designs are addressed. First and second order optimality conditions for characterizing the optimal solution are discussed. In particular, the method of instantaneous control is applied to establish the feedback laws. Moreover, the construction of feedback laws is also investigated by directly utilizing the optimality system with appropriate numerical discretization schemes. Computationally, it is much easier to implement the closed-loop feedback control than the optimal open-loop control, as the latter requires to solve the state equations forward in time, coupled with the adjoint equations backward in time together with a nonlinear optimality condition. Rigorous analysis and numerical experiments are presented to demonstrate our ideas and validate the efficacy of the control designs.
Energy efficiency and thermal comfort characteristics of convection–radiation combined cooling system in office buildings
In this study, the thermal comfort and energy consumption of two different terminal units when combined with three different water supply temperatures were studied. Results showed that convection–radiation combined cooling terminals can increase the water supply temperature under the same thermal comfort level compared with convection cooling terminals. When the water supply temperature was fixed at 11 °C, the energy consumption of convection–radiation combined cooling terminals was 9.1 % lower than that of convection cooling terminals. The higher the water supply temperature, the lower the energy consumption under convection–radiation combined cooling terminals. Furthermore, the energy consumption rates at a water supply temperature of 15 °C were 18.2 % and 8.8 % lower than those at 7 °C and 11 °C, respectively. Meanwhile, the comfort and system operation efficiency were optimal when the water supply temperature was 15 °C, and the energy consumption was lower when combined with the cooling of the dual terminals.
Study on Temperature Control of Gravity Anchorage without Cooling Water
This paper uses Midas Fea simulation software to analyze the hydration heat of a suspension bridge anchorage mass concrete construction without cooling water. According to specific boundary conditions and convection coefficients, the concrete heating process and cooling process are simulated. Analyze the influence of surface air convection coefficient on the surface tensile stress of the cast layer, and the influence of the pouring interval on the interlayer stress of the anchor block, and the temperature difference between the inside and outside of the concrete when the anchor block is layered. It is found that reducing the surface convection coefficient of the pouring layer can effectively improve the stress condition, and the pouring interval has little effect on the stress.
Membrane-assisted radiant cooling for expanding thermal comfort zones globally without air conditioning
We present results of a radiant cooling system that made the hot and humid tropical climate of Singapore feel cool and comfortable. Thermal radiation exchange between occupants and surfaces in the built environment can augment thermal comfort. The lack of widespread commercial adoption of radiant-cooling technologies is due to two widely held views: 1) The low temperature required for radiant cooling in humid environments will form condensation; and 2) cold surfaces will still cool adjacent air via convection, limiting overall radiant-cooling effectiveness. This work directly challenges these views and provides proof-ofconcept solutions examined for a transient thermal-comfort scenario. We constructed a demonstrative outdoor radiant-cooling pavilion in Singapore that used an infrared-transparent, lowdensity polyethylene membrane to provide radiant cooling at temperatures below the dew point. Test subjects who experienced the pavilion (n = 37) reported a “satisfactory” thermal sensation 79% of the time, despite experiencing 29.6 ± 0.9 °C air at 66.5 ± 5% relative humidity and with low air movement of 0.26 ± 0.18 m−1. Comfort was achieved with a coincident mean radiant temperature of 23.9 ± 0.8 °C, requiring a chilled water-supply temperature of 17.0 ± 1.8 °C. The pavilion operated successfully without any observed condensation on exposed surfaces, despite an observed dew-point temperature of 23.7 ± 0.7 °C. The coldest conditions observed without condensation used a chilled water-supply temperature 12.7 °C below the dew point, which resulted in a mean radiant temperature 3.6 °C below the dew point.
Side-heated Rayleigh–Bénard convection
Unlike in solids, heat transfer in fluids can be greatly enhanced due to the presence of convection. Under gravity, an unevenly distributed temperature field results in differences in buoyancy, driving fluid motion that is seen in Rayleigh–Bénard convection (RBC). In RBC, the overall heat flux is found to have a power-law dependence on the imposed temperature difference, with enhanced heat transfer much beyond thermal conduction. In a bounded domain of fluid such as a cube, how RBC responds to thermal perturbations from the vertical sidewall is not clear. Will sidewall heating or cooling modify flow circulation and heat transfer? We address these questions experimentally by adding heat to one side of the RBC. Through careful flow, temperature and heat flux measurements, the effects of adding side heating to RBC are examined and analysed, where a further enhancement of flow circulation and heat transfer is observed. Our results also point to a direct and simple control of the classical RBC system, allowing further manipulation and control of thermal convection through sidewall conditions.
Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr−1 in the major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.
Paper-based plasma sanitizers
This work describes disposable plasma generators made from metallized paper. The fabricated plasma generators with layered and patterned sheets of paper provide a simple and flexible format for dielectric barrier discharge to create atmospheric plasma without an applied vacuum. The porosity of paper allows gas to permeate its bulk volume and fuel plasma, while plasma-induced forced convection cools the substrate. When electrically driven with oscillating peak-to-peak potentials of ±1 to ±10 kV, the paper-based devices produced both volume and surface plasmas capable of killing microbes. The plasma sanitizers deactivated greater than 99% of Saccharomyces cerevisiae and greater than 99.9% of Escherichia coli cells with 30 s of noncontact treatment. Characterization of plasma generated from the sanitizers revealed a detectable level of UV-C (1.9 nW·cm−2·nm−1), modest surface temperature (60 °C with 60 s of activation), and a high level of ozone (13 ppm with 60 s of activation). These results deliver insights into themechanisms and suitability of paper-based substrates for active antimicrobial sanitization with scalable, flexible sheets. In addition, this work shows how paper-based generators are conformable to curved surfaces, appropriate for kirigami-like “stretchy” structures, compatible with user interfaces, and suitable for sanitization of microbes aerosolized onto a surface. In general, these disposable plasma generators represent progress toward biodegradable devices based on flexible renewable materials, which may impact the future design of protective garments, skin-like sensors for robots or prosthetics, and user interfaces in contaminated environments.
Thermo-adaptive interfacial solar evaporation enhanced by dynamic water gating
Solar-driven evaporation offers a sustainable solution for water purification, but efficiency losses due to heat dissipation and fouling limit its scalability. Herein, we present a bilayer-structured solar evaporator ( SDWE ) with dynamic fluidic flow mechanism, designed to ensure a thin water supply and self-cleaning capability. The porous polydopamine ( PDA ) layer on a nickel skeleton provides photothermal functionality and water microchannels, while the thermo-responsive sporopollenin layer on the bottom acts as a switchable water gate. Using confocal laser microscopy and micro-CT, we demonstrate that this unique structure ensures a steady supply of thin water layers, enhancing evaporation by minimizing latent heat at high temperatures. Additionally, the system initiates a self-cleaning process through bulk water convection when temperature drops due to salt accumulation, thus maintaining increased evaporation efficiency. Therefore, the optimized p-SDWE sample achieved a high evaporation rate of 3.58 kg m −2 h −1 using 93.9% solar energy from 1 sun irradiation, and produces 18–22 liters of purified water per square meter of SDWE per day from brine water. This dynamic water transport mechanism surpasses traditional day-night cycles, offering inherent thermal adaptability for continuous, high-efficiency evaporation. Solar-driven evaporation is a sustainable water purification method, but scalability is hindered by heat loss and salt fouling. The authors introduce a bilayer-structured solar evaporator with a dynamic fluid flow mechanism, which enables self-cleaning. This approach offers continuous, high-efficiency evaporation.