Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
82
result(s) for
"Conversation analysis Data processing."
Sort by:
Colloquial English : structure and variation
\"Colloquial English Drawing on vast amounts of new data from live, unscripted radio and TV broadcasts, and the internet, this is a brilliant and original analysis of colloquial English, revealing unusual and largely unreported types of clause structure. Andrew Radford debunks the myth that colloquial English has a substandard, simplified grammar, and shows that it has a coherent and complex structure of its own. The book develops a theoretically sophisticated account of structure and variation in colloquial English, advancing an area that has been previously investigated from other perspectives, such as corpus linguistics or conversational analysis, but never before in such detail from a formal syntactic viewpoint\"-- Provided by publisher.
Visual Linguistics with R
by
Rühlemann, Christoph
in
Computational & corpus linguistics
,
Computational linguistics
,
Corpus linguistics
2020
This book is a textbook on R, a programming language and environment for statistical analysis and visualization. Its primary aim is to introduce R as a research instrument in quantitative Interactional Linguistics. Focusing on visualization in R, the book presents original case studies on conversational talk-in-interaction based on corpus data and explains in good detail how key graphs in the case studies were programmed in R. It also includes task sections to enable readers to conduct their own research and compute their own visualizations in R. Both the code underlying the key graphs in the case studies and the datasets used in the case studies as well as in the task sections are made available on the book's companion website.
The Role of ChatGPT in Data Science: How AI-Assisted Conversational Interfaces Are Revolutionizing the Field
2023
ChatGPT, a conversational AI interface that utilizes natural language processing and machine learning algorithms, is taking the world by storm and is the buzzword across many sectors today. Given the likely impact of this model on data science, through this perspective article, we seek to provide an overview of the potential opportunities and challenges associated with using ChatGPT in data science, provide readers with a snapshot of its advantages, and stimulate interest in its use for data science projects. The paper discusses how ChatGPT can assist data scientists in automating various aspects of their workflow, including data cleaning and preprocessing, model training, and result interpretation. It also highlights how ChatGPT has the potential to provide new insights and improve decision-making processes by analyzing unstructured data. We then examine the advantages of ChatGPT’s architecture, including its ability to be fine-tuned for a wide range of language-related tasks and generate synthetic data. Limitations and issues are also addressed, particularly around concerns about bias and plagiarism when using ChatGPT. Overall, the paper concludes that the benefits outweigh the costs and ChatGPT has the potential to greatly enhance the productivity and accuracy of data science workflows and is likely to become an increasingly important tool for intelligence augmentation in the field of data science. ChatGPT can assist with a wide range of natural language processing tasks in data science, including language translation, sentiment analysis, and text classification. However, while ChatGPT can save time and resources compared to training a model from scratch, and can be fine-tuned for specific use cases, it may not perform well on certain tasks if it has not been specifically trained for them. Additionally, the output of ChatGPT may be difficult to interpret, which could pose challenges for decision-making in data science applications.
Journal Article
The Potential of Chatbots for Emotional Support and Promoting Mental Well-Being in Different Cultures: Mixed Methods Study
by
Choi, Junghoi
,
Jung, Chani
,
Cha, Meeyoung
in
Activities of daily living
,
Analysis
,
Artificial intelligence
2023
Artificial intelligence chatbot research has focused on technical advances in natural language processing and validating the effectiveness of human-machine conversations in specific settings. However, real-world chat data remain proprietary and unexplored despite their growing popularity, and new analyses of chatbot uses and their effects on mitigating negative moods are urgently needed. In this study, we investigated whether and how artificial intelligence chatbots facilitate the expression of user emotions, specifically sadness and depression. We also examined cultural differences in the expression of depressive moods among users in Western and Eastern countries. This study used SimSimi, a global open-domain social chatbot, to analyze 152,783 conversation utterances containing the terms \"depress\" and \"sad\" in 3 Western countries (Canada, the United Kingdom, and the United States) and 5 Eastern countries (Indonesia, India, Malaysia, the Philippines, and Thailand). Study 1 reports new findings on the cultural differences in how people talk about depression and sadness to chatbots based on Linguistic Inquiry and Word Count and n-gram analyses. In study 2, we classified chat conversations into predefined topics using semisupervised classification techniques to better understand the types of depressive moods prevalent in chats. We then identified the distinguishing features of chat-based depressive discourse data and the disparity between Eastern and Western users. Our data revealed intriguing cultural differences. Chatbot users in Eastern countries indicated stronger emotions about depression than users in Western countries (positive: P<.001; negative: P=.01); for example, Eastern users used more words associated with sadness (P=.01). However, Western users were more likely to share vulnerable topics such as mental health (P<.001), and this group also had a greater tendency to discuss sensitive topics such as swear words (P<.001) and death (P<.001). In addition, when talking to chatbots, people expressed their depressive moods differently than on other platforms. Users were more open to expressing emotional vulnerability related to depressive or sad moods to chatbots (74,045/148,590, 49.83%) than on social media (149/1978, 7.53%). Chatbot conversations tended not to broach topics that require social support from others, such as seeking advice on daily life difficulties, unlike on social media. However, chatbot users acted in anticipation of conversational agents that exhibit active listening skills and foster a safe space where they can openly share emotional states such as sadness or depression. The findings highlight the potential of chatbot-assisted mental health support, emphasizing the importance of continued technical and policy-wise efforts to improve chatbot interactions for those in need of emotional assistance. Our data indicate the possibility of chatbots providing helpful information about depressive moods, especially for users who have difficulty communicating emotions to other humans.
Journal Article
Eliciting and Receiving Online Support: Using Computer-Aided Content Analysis to Examine the Dynamics of Online Social Support
2015
Although many people with serious diseases participate in online support communities, little research has investigated how participants elicit and provide social support on these sites.
The first goal was to propose and test a model of the dynamic process through which participants in online support communities elicit and provide emotional and informational support. The second was to demonstrate the value of computer coding of conversational data using machine learning techniques (1) by replicating results derived from human-coded data about how people elicit support and (2) by answering questions that are intractable with small samples of human-coded data, namely how exposure to different types of social support predicts continued participation in online support communities. The third was to provide a detailed description of these machine learning techniques to enable other researchers to perform large-scale data analysis in these communities.
Communication among approximately 90,000 registered users of an online cancer support community was analyzed. The corpus comprised 1,562,459 messages organized into 68,158 discussion threads. Amazon Mechanical Turk workers coded (1) 1000 thread-starting messages on 5 attributes (positive and negative emotional self-disclosure, positive and negative informational self-disclosure, questions) and (2) 1000 replies on emotional and informational support. Their judgments were used to train machine learning models that automatically estimated the amount of these 7 attributes in the messages. Across attributes, the average Pearson correlation between human-based judgments and computer-based judgments was .65.
Part 1 used human-coded data to investigate relationships between (1) 4 kinds of self-disclosure and question asking in thread-starting posts and (2) the amount of emotional and informational support in the first reply. Self-disclosure about negative emotions (beta=.24, P<.001), negative events (beta=.25, P<.001), and positive events (beta=.10, P=.02) increased emotional support. However, asking questions depressed emotional support (beta=-.21, P<.001). In contrast, asking questions increased informational support (beta=.38, P<.001), whereas positive informational self-disclosure depressed it (beta=-.09, P=.003). Self-disclosure led to the perception of emotional needs, which elicited emotional support, whereas asking questions led to the perception of informational needs, which elicited informational support. Part 2 used machine-coded data to replicate these results. Part 3 analyzed the machine-coded data and showed that exposure to more emotional support predicted staying in the group longer 33% (hazard ratio=0.67, P<.001), whereas exposure to more informational support predicted leaving the group sooner (hazard ratio=1.05, P<.001).
Self-disclosure is effective in eliciting emotional support, whereas question asking is effective in eliciting informational support. Moreover, perceptions that people desire particular kinds of support influence the support they receive. Finally, the type of support people receive affects the likelihood of their staying in or leaving the group. These results demonstrate the utility of machine learning methods for investigating the dynamics of social support exchange in online support communities.
Journal Article
ChatGPT for Univariate Statistics: Validation of AI‐Assisted Data Analysis in Healthcare Research
2025
ChatGPT, a conversational artificial intelligence developed by OpenAI, has rapidly become an invaluable tool for researchers. With the recent integration of Python code interpretation into the ChatGPT environment, there has been a significant increase in the potential utility of ChatGPT as a research tool, particularly in terms of data analysis applications.
This study aimed to assess ChatGPT as a data analysis tool and provide researchers with a framework for applying ChatGPT to data management tasks, descriptive statistics, and inferential statistics.
A subset of the National Inpatient Sample was extracted. Data analysis trials were divided into data processing, categorization, and tabulation, as well as descriptive and inferential statistics. For data processing, categorization, and tabulation assessments, ChatGPT was prompted to reclassify variables, subset variables, and present data, respectively. Descriptive statistics assessments included mean, SD, median, and IQR calculations. Inferential statistics assessments were conducted at varying levels of prompt specificity (\"Basic,\" \"Intermediate,\" and \"Advanced\"). Specific tests included chi-square, Pearson correlation, independent 2-sample t test, 1-way ANOVA, Fisher exact, Spearman correlation, Mann-Whitney U test, and Kruskal-Wallis H test. Outcomes from consecutive prompt-based trials were assessed against expected statistical values calculated in Python (Python Software Foundation), SAS (SAS Institute), and RStudio (Posit PBC).
ChatGPT accurately performed data processing, categorization, and tabulation across all trials. For descriptive statistics, it provided accurate means, SDs, medians, and IQRs across all trials. Inferential statistics accuracy against expected statistical values varied with prompt specificity: 32.5% accuracy for \"Basic\" prompts, 81.3% for \"Intermediate\" prompts, and 92.5% for \"Advanced\" prompts.
ChatGPT shows promise as a tool for exploratory data analysis, particularly for researchers with some statistical knowledge and limited programming expertise. However, its application requires careful prompt construction and human oversight to ensure accuracy. As a supplementary tool, ChatGPT can enhance data analysis efficiency and broaden research accessibility.
Journal Article
A Hybrid Deep Learning Emotion Classification System Using Multimodal Data
by
Lee, Jae-Dong
,
Kim, Dong-Hwi
,
Park, Ji-Hyeok
in
Accuracy
,
Anatomical systems
,
Artificial intelligence
2023
This paper proposes a hybrid deep learning emotion classification system (HDECS), a hybrid multimodal deep learning system designed for emotion classification in a specific national language. Emotion classification is important in diverse fields, including tailored corporate services, AI advancement, and more. Additionally, most sentiment classification techniques in speaking situations are based on a single modality: voice, conversational text, vital signs, etc. However, analyzing these data presents challenges because of the variations in vocal intonation, text structures, and the impact of external stimuli on physiological signals. Korean poses challenges in natural language processing, including subject omission and spacing issues. To overcome these challenges and enhance emotion classification performance, this paper presents a case study using Korean multimodal data. The case study model involves retraining two pretrained models, LSTM and CNN, until their predictions on the entire dataset reach an agreement rate exceeding 0.75. Predictions are used to generate emotional sentences appended to script data, which are further processed using BERT for final emotion prediction. The research result is evaluated by using categorical cross-entropy (CCE) to measure the difference between the model’s predictions and actual labels, F1 score, and accuracy. According to the evaluation, the case model outperforms the existing KLUE/roBERTa model with improvements of 0.5 in CCE, 0.09 in accuracy, and 0.11 in F1 score. As a result, the HDECS is expected to perform well not only on Korean multimodal datasets but also on sentiment classification considering the speech characteristics of various languages and regions.
Journal Article
Developing a Technical-Oriented Taxonomy to Define Archetypes of Conversational Agents in Health Care: Literature Review and Cluster Analysis
2023
The evolution of artificial intelligence and natural language processing generates new opportunities for conversational agents (CAs) that communicate and interact with individuals. In the health domain, CAs became popular as they allow for simulating the real-life experience in a health care setting, which is the conversation with a physician. However, it is still unclear which technical archetypes of health CAs can be distinguished. Such technical archetypes are required, among other things, for harmonizing evaluation metrics or describing the landscape of health CAs.
The objective of this work was to develop a technical-oriented taxonomy for health CAs and characterize archetypes of health CAs based on their technical characteristics.
We developed a taxonomy of technical characteristics for health CAs based on scientific literature and empirical data and by applying a taxonomy development framework. To demonstrate the applicability of the taxonomy, we analyzed the landscape of health CAs of the last years based on a literature review. To form technical design archetypes of health CAs, we applied a k-means clustering method.
Our taxonomy comprises 18 unique dimensions corresponding to 4 perspectives of technical characteristics (setting, data processing, interaction, and agent appearance). Each dimension consists of 2 to 5 characteristics. The taxonomy was validated based on 173 unique health CAs that were identified out of 1671 initially retrieved publications. The 173 CAs were clustered into 4 distinctive archetypes: a text-based ad hoc supporter; a multilingual, hybrid ad hoc supporter; a hybrid, single-language temporary advisor; and, finally, an embodied temporary advisor, rule based with hybrid input and output options.
From the cluster analysis, we learned that the time dimension is important from a technical perspective to distinguish health CA archetypes. Moreover, we were able to identify additional distinctive, dominant characteristics that are relevant when evaluating health-related CAs (eg, input and output options or the complexity of the CA personality). Our archetypes reflect the current landscape of health CAs, which is characterized by rule based, simple systems in terms of CA personality and interaction. With an increase in research interest in this field, we expect that more complex systems will arise. The archetype-building process should be repeated after some time to check whether new design archetypes emerge.
Journal Article
Social network analysis of Twitter interactions: a directed multilayer network approach
by
LaCasse, Phillip M
,
Logan, Austin P
,
Lunday, Brian J
in
Algorithms
,
Computer mediated communication
,
Conversation
2023
Effective employment of social media for any social influence outcome requires a detailed understanding of the target audience. Social media provides a rich repository of self-reported information that provides insight regarding the sentiments and implied priorities of an online population. Using Social Network Analysis, this research models user interactions on Twitter as a weighted, directed network. Topic modeling through Latent Dirichlet Allocation identifies the topics of discussion in Tweets, which this study uses to induce a directed multilayer network wherein users (in one layer) are connected to the conversations and topics (in a second layer) in which they have participated, with inter-layer connections representing user participation in conversations. Analysis of the resulting network identifies both influential users and highly connected groups of individuals, informing an understanding of group dynamics and individual connectivity. The results demonstrate that the generation of a topically-focused social network to represent conversations yields more robust findings regarding influential users, particularly when analysts collect Tweets from a variety of discussions through more general search queries. Within the analysis, PageRank performed best among four measures used to rank individual influence within this problem context. In contrast, the results of applying both the Greedy Modular Algorithm and the Leiden Algorithm to identify communities were mixed; each method yielded valuable insights, but neither technique was uniformly superior. The demonstrated four-step process is readily replicable, and an interested user can automate the process with relatively low effort or expense.
Journal Article