Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,834 result(s) for "Convex and Discrete Geometry"
Sort by:
Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry
In recent years it has been noted that a number of combinatorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and oriented matroids have the structure of a finite monoid called a left regular band. Random walks on the monoid model a number of interesting Markov chains such as the Tsetlin library and riffle shuffle. The representation theory of left regular bands then comes into play and has had a major influence on both the combinatorics and the probability theory associated to such structures. In a recent paper, the authors established a close connection between algebraic and combinatorial invariants of a left regular band by showing that certain homological invariants of the algebra of a left regular band coincide with the cohomology of order complexes of posets naturally associated to the left regular band. The purpose of the present monograph is to further develop and deepen the connection between left regular bands and poset topology. This allows us to compute finite projective resolutions of all simple modules of unital left regular band algebras over fields and much more. In the process, we are led to define the class of CW left regular bands as the class of left regular bands whose associated posets are the face posets of regular CW complexes. Most of the examples that have arisen in the literature belong to this class. A new and important class of examples is a left regular band structure on the face poset of a CAT(0) cube complex. Also, the recently introduced notion of a COM (complex of oriented matroids or conditional oriented matroid) fits nicely into our setting and includes CAT(0) cube complexes and certain more general CAT(0) zonotopal complexes. A fairly complete picture of the representation theory for CW left regular bands is obtained.
Existence of unimodular triangulations — positive results
Unimodular triangulations of lattice polytopes arise in algebraic geometry, commutative algebra, integer programming and, of course, combinatorics. In this article, we review several classes of polytopes that do have unimodular triangulations and constructions that preserve their existence. We include, in particular, the first effective proof of the classical result by Knudsen-Mumford-Waterman stating that every lattice polytope has a dilation that admits a unimodular triangulation. Our proof yields an explicit (although doubly exponential) bound for the dilation factor.
The Bounded and Precise Word Problems for Presentations of Groups
We introduce and study the bounded word problem and the precise word problem for groups given by means of generators and defining relations. For example, for every finitely presented group, the bounded word problem is in
Convexity of Singular Affine Structures and Toric-Focus Integrable Hamiltonian Systems
This work is devoted to a systematic study of symplectic convexity for integrable Hamiltonian systems with elliptic and focus-focus singularities. A distinctive feature of these systems is that their base spaces are still smooth manifolds (with boundary and corners), analogous to the toric case, but their associated integral affine structures are singular, with non-trivial monodromy, due to focus singularities. We obtain a series of convexity results, both positive and negative, for such singular integral affine base spaces. In particular, near a focus singular point, they are locally convex and the local-global convexity principle still applies. They are also globally convex under some natural additional conditions. However, when the monodromy is sufficiently large, the local-global convexity principle breaks down and the base spaces can be globally non-convex, even for compact manifolds. As a surprising example, we construct a 2-dimensional “integral affine black hole”, which is locally convex but for which a straight ray from the center can never escape.
The Brunn-Minkowski Inequality and A Minkowski Problem for Nonlinear Capacity
In this article we study two classical potential-theoretic problems in convex geometry. The first problem is an inequality of Brunn-Minkowski type for a nonlinear capacity, In the first part of this article, we prove the Brunn-Minkowski inequality for this capacity: In the second part of this article we study a Minkowski problem for a certain measure associated with a compact convex set
Horizons of fractal geometry and complex dimensions : 2016 Summer School, Fractal Geometry and Complex Dimensions, in celebration of the 60th birthday of Michel Lapidus, June 21-29, 2016, California Polytechnic State University, San Luis Obispo, California
This volume contains the proceedings of the 2016 Summer School on Fractal Geometry and Complex Dimensions, in celebration of Michel L. Lapidus's 60th birthday, held from June 21-29, 2016, at California Polytechnic State University, San Luis Obispo, California. The theme of the contributions is fractals and dynamics and content is split into four parts, centered around the following themes: Dimension gaps and the mass transfer principle, fractal strings and complex dimensions, Laplacians on fractal domains and SDEs with fractal noise, and aperiodic order (Delone sets and tilings).
Tropical and idempotent mathematics and applications : International Workshop Tropical and Idempotent Mathematics, August 26-31, 2012, Independent University, Moscow, Russia
This volume contains the proceedings of the International Workshop on Tropical and Idempotent Mathematics, held at the Independent University of Moscow, Russia, from August 26-31, 2012. The main purpose of the conference was to bring together and unite researchers and specialists in various areas of tropical and idempotent mathematics and applications. This volume contains articles on algebraic foundations of tropical mathematics as well as articles on applications of tropical mathematics in various fields as diverse as economics, electroenergetic networks, chemical reactions, representation theory, and foundations of classical thermodynamics. This volume is intended for graduate students and researchers interested in tropical and idempotent mathematics or in their applications in other areas of mathematics and in technical sciences.