Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,573
result(s) for
"Copper base alloys"
Sort by:
Selection of Complete Recovery of Precious Metals in the Processing of Copper-Nickel Alloys in Hydrometallurgical Way
2018
This article deals with the key aspects of how to determine the dissolution potential of copper-nickel base alloys containing precious metals in a lab environment and select conditions for their dissolution. The work indicates the composition of the anode under research and presents the dependence graphs of the potentials on time and stress. It also explains the effect of some impurities on the process.
Journal Article
Additive manufacturing of ultrafine-grained high-strength titanium alloys
2019
Additive manufacturing, often known as three-dimensional (3D) printing, is a process in which a part is built layer-by-layer and is a promising approach for creating components close to their final (net) shape. This process is challenging the dominance of conventional manufacturing processes for products with high complexity and low material waste
1
. Titanium alloys made by additive manufacturing have been used in applications in various industries. However, the intrinsic high cooling rates and high thermal gradient of the fusion-based metal additive manufacturing process often leads to a very fine microstructure and a tendency towards almost exclusively columnar grains, particularly in titanium-based alloys
1
. (Columnar grains in additively manufactured titanium components can result in anisotropic mechanical properties and are therefore undesirable
2
.) Attempts to optimize the processing parameters of additive manufacturing have shown that it is difficult to alter the conditions to promote equiaxed growth of titanium grains
3
. In contrast with other common engineering alloys such as aluminium, there is no commercial grain refiner for titanium that is able to effectively refine the microstructure. To address this challenge, here we report on the development of titanium–copper alloys that have a high constitutional supercooling capacity as a result of partitioning of the alloying element during solidification, which can override the negative effect of a high thermal gradient in the laser-melted region during additive manufacturing. Without any special process control or additional treatment, our as-printed titanium–copper alloy specimens have a fully equiaxed fine-grained microstructure. They also display promising mechanical properties, such as high yield strength and uniform elongation, compared to conventional alloys under similar processing conditions, owing to the formation of an ultrafine eutectoid microstructure that appears as a result of exploiting the high cooling rates and multiple thermal cycles of the manufacturing process. We anticipate that this approach will be applicable to other eutectoid-forming alloy systems, and that it will have applications in the aerospace and biomedical industries.
Titanium–copper alloys with fully equiaxed grains and a fine microstructure are realized via an additive manufacturing process that exploits high cooling rates and multiple thermal cycles.
Journal Article
Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes
2022
Aqueous zinc-ion batteries, in terms of integration with high safety, environmental benignity, and low cost, have attracted much attention for powering electronic devices and storage systems. However, the interface instability issues at the Zn anode caused by detrimental side reactions such as dendrite growth, hydrogen evolution, and metal corrosion at the solid (anode)/liquid (electrolyte) interface impede their practical applications in the fields requiring long-term performance persistence. Despite the rapid progress in suppressing the side reactions at the materials interface, the mechanism of ion storage and dendrite formation in practical aqueous zinc-ion batteries with dual-cation aqueous electrolytes is still unclear. Herein, we design an interface material consisting of forest-like three-dimensional zinc-copper alloy with engineered surfaces to explore the Zn plating/stripping mode in dual-cation electrolytes. The three-dimensional nanostructured surface of zinc-copper alloy is demonstrated to be in favor of effectively regulating the reaction kinetics of Zn plating/stripping processes. The developed interface materials suppress the dendrite growth on the anode surface towards high-performance persistent aqueous zinc-ion batteries in the aqueous electrolytes containing single and dual cations. This work remarkably enhances the fundamental understanding of dual-cation intercalation chemistry in aqueous electrochemical systems and provides a guide for exploring high-performance aqueous zinc-ion batteries and beyond.
The dual-cations electrochemical system was considered to be a promising strategy to facilitate sluggish diffusion kinetics. Here the authors prepare zinc-based alloy anode with three-dimensional interface, thus to improve the interfacial stability, achieve high-performing battery system in the aqueous electrolytes containing dual cations.
Journal Article
Synergy of multiple precipitate/matrix interface structures for a heat resistant high-strength Al alloy
2023
High strength aluminum alloys are widely used but their strength is reduced as nano-precipitates coarsen rapidly in medium and high temperatures, which greatly limits their application. Single solute segregation layers at precipitate/matrix interfaces are not satisfactory in stabilizing precipitates. Here we obtain multiple interface structures in an Al-Cu-Mg-Ag-Si-Sc alloy including Sc segregation layers, C and L phases as well as a newly discovered χ-AgMg phase, which partially cover the θ′ precipitates. By atomic resolution characterizations and ab initio calculations, such interface structures have been confirmed to synergistically retard coarsening of precipitates. Therefore, the designed alloy shows the good combination of heat resistance and strength among all series of Al alloys, with 97% yield strength retained after thermal exposure, which is as high as 400 MPa. This concept of covering precipitates with multiple interface phases and segregation layers provides an effective strategy for designing other heat resistant materials.
Coarsening of precipitates in medium and high temperatures causes reduction in strength of Al alloys. Here, the authors design an Al-Cu-Mg-Ag-Si-Sc alloy with multiple interface structures, showing an excellent combination of strength and heat resistance compared to conventional Al alloys.
Journal Article
Coherent Precipitation and Strengthening in Compositionally Complex Alloys: A Review
2018
High-performance conventional engineering materials (including Al alloys, Mg alloys, Cu alloys, stainless steels, Ni superalloys, etc.) and newly-developed high entropy alloys are all compositionally-complex alloys (CCAs). In these CCA systems, the second-phase particles are generally precipitated in their solid-solution matrix, in which the precipitates are diverse and can result in different strengthening effects. The present work aims at generalizing the precipitation behavior and precipitation strengthening in CCAs comprehensively. First of all, the morphology evolution of second-phase particles and precipitation strengthening mechanisms are introduced. Then, the precipitation behaviors in diverse CCA systems are illustrated, especially the coherent precipitation. The relationship between the particle morphology and strengthening effectiveness is discussed. It is addressed that the challenge in the future is to design the stable coherent microstructure in different solid-solution matrices, which will be the most effective approach for the enhancement of alloy strength.
Journal Article
Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements
by
Motoki, Daisuke
,
Ishii, Takafumi
,
Li, Wenwen
in
639/301/1034/1037
,
639/638/563/979
,
639/638/563/980
2022
Computational material discovery is under intense study owing to its ability to explore the vast space of chemical systems. Neural network potentials (NNPs) have been shown to be particularly effective in conducting atomistic simulations for such purposes. However, existing NNPs are generally designed for narrow target materials, making them unsuitable for broader applications in material discovery. Here we report a development of universal NNP called PreFerred Potential (PFP), which is able to handle any combination of 45 elements. Particular emphasis is placed on the datasets, which include a diverse set of virtual structures used to attain the universality. We demonstrated the applicability of PFP in selected domains: lithium diffusion in LiFeSO
4
F, molecular adsorption in metal-organic frameworks, an order–disorder transition of Cu-Au alloys, and material discovery for a Fischer–Tropsch catalyst. They showcase the power of PFP, and this technology provides a highly useful tool for material discovery.
Existing neural network potentials are generally designed for narrow target materials. Here the authors develop a neural network potential which is able to handle any combination of 45 elements and show its applicability in multiple domains.
Journal Article
Ternary nickel–tungsten–copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation
2021
Operating fuel cells in alkaline environments permits the use of platinum-group-metal-free (PGM-free) catalysts and inexpensive bipolar plates, leading to significant cost reduction. Of the PGM-free catalysts explored, however, only a few nickel-based materials are active for catalyzing the hydrogen oxidation reaction (HOR) in alkali; moreover, these catalysts deactivate rapidly at high anode potentials owing to nickel hydroxide formation. Here we describe that a nickel–tungsten–copper (Ni
5.2
WCu
2.2
) ternary alloy showing HOR activity rivals Pt/C benchmark in alkaline electrolyte. Importantly, we achieved a high anode potential up to 0.3 V versus reversible hydrogen electrode on this catalyst with good operational stability over 20 h. The catalyst also displays excellent CO-tolerant ability that Pt/C catalyst lacks. Experimental and theoretical studies uncover that nickel, tungsten, and copper play in synergy to create a favorable alloying surface for optimized hydrogen and hydroxyl bindings, as well as for the improved oxidation resistance, which result in the HOR enhancement.
The lack of efficient and cost-effective catalysts for H
2
oxidation reaction (HOR) hinders the application of anion exchange membrane fuel cells. Here, authors report a ternary nickel-tungsten-copper nanoalloy with marked HOR activity and stability that rivals the benchmark platinum catalyst.
Journal Article
Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation
2018
Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm
−2
. The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.
Splitting water into high-energy fuel represents a renewable way to generate energy, yet the sluggish oxidation kinetics drives up technological costs. Here, the authors prepare tri-metallic core-shell electrodes using nickel, iron, and copper metals to accelerate electricity-driven water splitting.
Journal Article
Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys
2016
A modified chemical vapour deposition set-up allowing extremely localized injection of carbon precursors on a Cu–Ni substrate is used for the fast growth of large-area single-crystalline monolayers of graphene.
Wafer-scale single-crystalline graphene monolayers are highly sought after as an ideal platform for electronic and other applications
1
,
2
,
3
. At present, state-of-the-art growth methods based on chemical vapour deposition allow the synthesis of one-centimetre-sized single-crystalline graphene domains in ∼12 h, by suppressing nucleation events on the growth substrate
4
. Here we demonstrate an efficient strategy for achieving large-area single-crystalline graphene by letting a single nucleus evolve into a monolayer at a fast rate. By locally feeding carbon precursors to a desired position of a substrate composed of an optimized Cu–Ni alloy, we synthesized an ∼1.5-inch-large graphene monolayer in 2.5 h. Localized feeding induces the formation of a single nucleus on the entire substrate, and the optimized alloy activates an isothermal segregation mechanism that greatly expedites the growth rate
5
,
6
. This approach may also prove effective for the synthesis of wafer-scale single-crystalline monolayers of other two-dimensional materials.
Journal Article
Study on the jet molding of Cu-W-Zrx alloy liner
2024
With the rapid development of armored weapons, the improvement of armor-breaking weapons is imminent, and the liners as the core component of armor-breaking has attracted much attention. As a result, the paper uses AUTODYN-2D kinetic simulation software to simulate the generation of jets in the erosion process of Cu-W alloy liner and Cu-W-Zr alloy liner materials. The results demonstrate that the jet created by Cu-W-Zr alloy is longer than that formed by Cu-W alloy, and it has good erosion ability with high head velocity during the jet creation process, which can be used to develop liners.
Journal Article