Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
296 result(s) for "Coprolites"
Sort by:
Functional diversity of microbial ecologies estimated from ancient human coprolites and dental calculus
Human microbiome studies are increasingly incorporating macroecological approaches, such as community assembly, network analysis and functional redundancy to more fully characterize the microbiome. Such analyses have not been applied to ancient human microbiomes, preventing insights into human microbiome evolution. We address this issue by analysing published ancient microbiome datasets: coprolites from Rio Zape ( n = 7; 700 CE Mexico) and historic dental calculus ( n = 44; 1770–1855 CE, UK), as well as two novel dental calculus datasets: Maya ( n = 7; 170 BCE-885 CE, Belize) and Nuragic Sardinians ( n = 11; 1400–850 BCE, Italy). Periodontitis-associated bacteria ( Treponema denticola , Fusobacterium nucleatum and Eubacterium saphenum ) were identified as keystone taxa in the dental calculus datasets. Coprolite keystone taxa included known short-chain fatty acid producers ( Eubacterium biforme, Phascolarctobacterium succinatutens ) and potentially disease-associated bacteria ( Escherichia , Brachyspira) . Overlap in ecological profiles between ancient and modern microbiomes was indicated by similarity in functional response diversity profiles between contemporary hunter–gatherers and ancient coprolites, as well as parallels between ancient Maya, historic UK, and modern Spanish dental calculus; however, the ancient Nuragic dental calculus shows a distinct ecological structure. We detected key ecological signatures from ancient microbiome data, paving the way to expand understanding of human microbiome evolution. This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.
Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments
Ancient DNA recovered from Pleistocene sediments represents a rich resource for the study of past hominin and environmental diversity. However, little is known about how DNA is preserved in sediments and the extent to which it may be translocated between archaeological strata. Here, we investigate DNA preservation in 47 blocks of resin-impregnated archaeological sediment collected over the last four decades for micromorphological analyses at 13 prehistoric sites in Europe, Asia, Africa, and North America and show that such blocks can preserve DNA of hominins and other mammals. Extensive microsampling of sediment blocks from Denisova Cave in the Altai Mountains reveals that the taxonomic composition of mammalian DNA differs drastically at the millimeter-scale and that DNA is concentrated in small particles, especially in fragments of bone and feces (coprolites), suggesting that these are substantial sources of DNA in sediments. Three microsamples taken in close proximity in one of the blocks yielded Neanderthal DNA from at least two male individuals closely related to Denisova 5, a Neanderthal toe bone previously recovered from the same layer. Our work indicates that DNA can remain stably localized in sediments over time and provides a means of linking genetic information to the archaeological and ecological records on a microstratigraphic scale.
Dinosaur Coprolites and the Early Evolution of Grasses and Grazers
Silicified plant tissues (phytoliths) preserved in Late Cretaceous coprolites from India show that at least five taxa from extant grass (Poaceae) subclades were present on the Indian subcontinent during the latest Cretaceous. This taxonomic diversity suggests that crown-group Poaceae had diversified and spread in Gondwana before India became geographically isolated. Other phytoliths extracted from the coprolites (from dicotyledons, conifers, and palms) suggest that the suspected dung producers (titanosaur sauropods) fed indiscriminately on a wide range of plants. These data also make plausible the hypothesis that gondwanatherian mammals with hypsodont cheek teeth were grazers.
Parasite infection at the early farming community of Çatalhöyük
The early village at Çatalhöyük (7100–6150 BC) provides important evidence for the Neolithic and Chalcolithic people of central Anatolia. This article reports on the use of lipid biomarker analysis to identify human coprolites from midden deposits, and microscopy to analyse these coprolites and soil samples from human burials. Whipworm (Trichuris trichiura) eggs are identified in two coprolites, but the pelvic soil samples are negative for parasites. Çatalhöyük is one of the earliest Eurasian sites to undergo palaeoparasitological analysis to date. The results inform how intestinal parasitic infection changed as humans modified their subsistence strategies from hunting and gathering to settled farming.
Recovering parasites from mummies and coprolites: an epidemiological approach
In the field of archaeological parasitology, researchers have long documented the distribution of parasites in archaeological time and space through the analysis of coprolites and human remains. This area of research defined the origin and migration of parasites through presence/absence studies. By the end of the 20th century, the field of pathoecology had emerged as researchers developed an interest in the ancient ecology of parasite transmission. Supporting studies were conducted to establish the relationships between parasites and humans, including cultural, subsistence, and ecological reconstructions. Parasite prevalence data were collected to infer the impact of parasitism on human health. In the last few decades, a paleoepidemiological approach has emerged with a focus on applying statistical techniques for quantification. The application of egg per gram (EPG) quantification methods provide data about parasites’ prevalence in ancient populations and also identify the pathological potential that parasitism presented in different time periods and geographic places. Herein, we compare the methods used in several laboratories for reporting parasite prevalence and EPG quantification. We present newer quantification methods to explore patterns of parasite overdispersion among ancient people. These new methods will be able to produce more realistic measures of parasite infections among people of the past. These measures allow researchers to compare epidemiological patterns in both ancient and modern populations.
Cult, herding, and ‘pilgrimage’ in the Late Neolithic of north-west Arabia: Excavations at a mustatil east of AlUla
Since the 1970s, monumental stone structures now called mustatil have been documented across Saudi Arabia. However, it was not until 2017 that the first intensive and systematic study of this structure type was undertaken, although this study could not determine the precise function of these features. Recent excavations in AlUla have now determined that these structures fulfilled a ritual purpose, with specifically selected elements of both wild and domestic taxa deposited around a betyl. This paper outlines the results of the University of Western Australia’s work at site IDIHA-0008222, a 140 m long mustatil (IDIHA-F-0011081), located 55 km east of AlUla. Work at this site sheds new and important light on the cult, herding and ‘pilgrimage’ in the Late Neolithic of north-west Arabia, with the site revealing one of the earliest chronometrically dated betyls in the Arabian Peninsula and some of the earliest evidence for domestic cattle in northern Arabia.
The soil in our microbial DNA informs about environmental interfaces across host and subsistence modalities
In this study, I use microbiome datasets from global soil samples and diverse hosts to learn whether soil microbial taxa are found in host microbiomes, and whether these observations fit the narrative that environmental interaction influences human microbiomes. A major motivation for conducting host-associated microbiome research is to contribute towards understanding how the environment may influence host physiology. The microbial molecular network is considered a key vector by which environmental traits may be transmitted to the host. Research on human evolution seeks evidence that can inform about the living experiences of human ancestors. This objective is substantially enhanced by recent work on ancient biomolecules from preserved microbial tissues, such as dental calculus, faecal sediments and whole coprolites. A challenge yet is to distinguish authentic biomolecules from environmental contaminants deposited contemporaneously, primarily from soil. However, we do not have sound expectations about the soil microbial elements arriving to host-associated microbiomes in a modern context. One assumption in human microbiome research is that proximity to the natural environment should affect biodiversity or impart genetic elements. I present evidence supporting the assumption that environmental soil taxa are found among host-associated gut taxa, which can recapitulate the surrounding host habitat ecotype. Soil taxa found in gut microbiomes relate to a set of universal ‘core’ taxa for all soil ecotypes, demonstrating that widespread host organisms may experience a consistent pattern of external environmental cues, perhaps critical for development. Observed differentiation of soil feature diversity, abundance and composition among human communities, great apes and invertebrate hosts also indicates that lifestyle patterns are inferable from an environmental signal that is retrievable from gut microbiome amplicon data. This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.
Epipalaeolithic animal tending to Neolithic herding at Abu Hureyra, Syria (12,800–7,800 calBP): Deciphering dung spherulites
Excavations at Abu Hureyra, Syria, during the 1970s exposed a long sequence of occupation spanning the transition from hunting-and-gathering to agriculture. Dung spherulites preserved within curated flotation samples from Epipalaeolithic (ca. 13,300–11,400 calBP) and Neolithic (ca. 10,600–7,800 calBP) occupations are examined here alongside archaeological, archaeobotanical, and zooarchaeological data to consider animal management, fuel selection, and various uses of dung. Spherulites were present throughout the entire sequence in varying concentrations. Using a new method to quantify spherulites, exclusion criteria were developed to eliminate samples possibly contaminated with modern dung, strengthening observations of ancient human behavior. Darkened spherulites within an Epipalaeolithic 1B firepit (12,800–12,300 calBP) indicate burning between 500–700°C, documenting early use of dung fuel by hunter-gatherers as a supplement to wood, coeval with a dramatic shift to rectilinear architecture, increasing proportions of wild sheep and aurochsen, reduced emphasis on small game, and elevated dung concentrations immediately outside the 1B dwelling. Combined, these observations suggest that small numbers of live animals (possibly wild sheep) were tended on-site by Epipalaeolithic hunter-gatherers to supplement gazelle hunting, raising the question of whether early experiments in animal management emerged contemporaneously with, or pre-date, cultivation. Dung was used to prepare plaster floors during the Neolithic and continued to be burned as a supplemental fuel, indicating that spherulites were deposited via multiple human- and animal-related pathways. This has important implications for interpretations of archaeobotanical assemblages across the region. Spherulite concentrations dropped abruptly during Neolithic 2B (9,300–8,000 calBP) and 2C (8,000–7,800 calBP), when sheep/goat herding surpassed gazelle hunting, possibly corresponding with movement of animals away from the site as herd sizes increased. As hunter-gatherers at Abu Hureyra began interacting with wild taxa in different ways, they set in motion a remarkable transformation in the ways people interacted with animals, plants, and their environment.
Metagenomic analyses of 7000 to 5500 years old coprolites excavated from the Torihama shell-mound site in the Japanese archipelago
Coprolites contain various kinds of ancient DNAs derived from gut micro-organisms, viruses, and foods, which can help to determine the gut environment of ancient peoples. Their genomic information should be helpful in elucidating the interaction between hosts and microbes for thousands of years, as well as characterizing the dietary behaviors of ancient people. We performed shotgun metagenomic sequencing on four coprolites excavated from the Torihama shell-mound site in the Japanese archipelago. The coprolites were found in the layers of the Early Jomon period, corresponding stratigraphically to 7000 to 5500 years ago. After shotgun sequencing, we found that a significant number of reads showed homology with known gut microbe, viruses, and food genomes typically found in the feces of modern humans. We detected reads derived from several types of phages and their host bacteria simultaneously, suggesting the coexistence of viruses and their hosts. The food genomes provide biological evidence for the dietary behavior of the Jomon people, consistent with previous archaeological findings. These results indicate that ancient genomic analysis of coprolites is useful for understanding the gut environment and lifestyle of ancient peoples.
Clovis Age Western Stemmed Projectile Points and Human Coprolites at the Paisley Caves
The Paisley Caves in Oregon record the oldest directly dated human remains (DNA) in the Western Hemisphere. More than 100 high-precision radiocarbon dates show that deposits containing artifacts and coprolites ranging in age from 12,450 to 2295 ¹⁴C years ago are well stratified. Western Stemmed projectile points were recovered in deposits dated to 11,070 to 11,340 ¹⁴C years ago, a time contemporaneous with or preceding the Clovis technology. There is no evidence of diagnostic Clovis technology at the site. These two distinct technologies were parallel developments, not the product of a unilinear technological evolution. \"Blind testing\" analysis of coprolites by an independent laboratory confirms the presence of human DNA in specimens of pre-Clovis age. The colonization of the Americas involved multiple technologically divergent, and possibly genetically divergent, founding groups.