Catalogue Search | MBRL
نتائج البحث
MBRLSearchResults
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
-
الضبطالضبط
-
مُحَكَّمةمُحَكَّمة
-
نوع العنصرنوع العنصر
-
الموضوعالموضوع
-
السنةمن:-إلى:
-
المزيد من المرشحاتالمزيد من المرشحاتالمصدراللغة
منجز
مرشحات
إعادة تعيين
7,999
نتائج ل
"Copy number variations"
صنف حسب:
Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects
2017
The CNV analysis group of the Psychiatric Genomic Consortium analyzes a large schizophrenia cohort to examine genomic copy number variants (CNVs) and disease risk. They find an enrichment of CNV burden in cases versus controls and identify 8 genome-wide significant loci as well as novel suggestive loci conferring either risk or protection to schizophrenia.
Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (odds ratio (OR) = 1.11,
P
= 5.7 × 10
−15
), which persisted after excluding loci implicated in previous studies (OR = 1.07,
P
= 1.7 × 10
−6
). CNV burden was enriched for genes associated with synaptic function (OR = 1.68,
P
= 2.8 × 10
−11
) and neurobehavioral phenotypes in mouse (OR = 1.18,
P
= 7.3 × 10
−5
). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (
NRXN1
), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by nonallelic homologous recombination.
Journal Article
HER2 expression, copy number variation and survival outcomes in HER2-low non-metastatic breast cancer: an international multicentre cohort study and TCGA-METABRIC analysis
بواسطة
Veronique Kiak Mien Tan
,
Yeon Hee Park
,
Seri Park
في
Analysis
,
Biomedicine
,
Breast cancer
2022
Background
HER2-low breast cancer (BC) is currently an area of active interest. This study evaluated the impact of low expression of HER2 on survival outcomes in HER2-negative non-metastatic breast cancer (BC).
Methods
Patients with HER2-negative non-metastatic BC from 6 centres within the Asian Breast Cancer Cooperative Group (ABCCG) (
n
= 28,280) were analysed. HER2-low was defined as immunohistochemistry (IHC) 1+ or 2+ and in situ hybridization non-amplified (ISH−) and HER2-zero as IHC 0. Relapse-free survival (RFS) and overall survival (OS) by hormone receptor status and HER2 IHC 0, 1+ and 2+ ISH− status were the main outcomes. A combined TCGA-BRCA and METABRIC cohort (
n
= 1967) was also analysed to explore the association between HER2 expression,
ERBB2
copy number variation (CNV) status and RFS.
Results
ABCCG cohort median follow-up was 6.6 years; there were 12,260 (43.4%) HER2-low BC and 16,020 (56.6%) HER2-zero BC. The outcomes were better in HER2-low BC than in HER2-zero BC (RFS: centre-adjusted hazard ratio (HR) 0.88, 95% CI 0.82–0.93,
P
< 0.001; OS: centre-adjusted HR 0.82, 95% CI 0.76–0.89,
P
< 0.001). On multivariable analysis, HER2-low status was prognostic (RFS: HR 0.90, 95% CI 0.85–0.96,
P
= 0.002; OS: HR 0.86, 95% CI 0.79–0.93,
P
< 0.001). These differences remained significant in hormone receptor-positive tumours and for OS in hormone receptor-negative tumours. Superior outcomes were observed for HER2 IHC1+ BC versus HER2-zero BC (RFS: HR 0.89, 95% CI 0.83–0.96,
P
= 0.001; OS: HR 0.85, 95% CI 0.78–0.93,
P
= 0.001). No significant differences were seen between HER2 IHC2+ ISH− and HER2-zero BCs. In the TCGA-BRCA and METABRIC cohorts,
ERBB2
CNV status was an independent RFS prognostic factor (neutral versus non-neutral HR 0.71, 95% CI 0.59–0.86,
P
< 0.001); no differences in RFS by
ERBB2
mRNA expression levels were found.
Conclusions
HER2-low BC had a superior prognosis compared to HER2-zero BC in the non-metastatic setting, though absolute differences were modest and driven by HER2 IHC 1+ BC.
ERBB2
CNV merits further investigation in HER2-negative BC.
Journal Article
The octopus genome and the evolution of cephalopod neural and morphological novelties
2015
Octopus bimaculoides
genome and transcriptome sequencing demonstrated that a core gene repertoire broadly similar to that of other invertebrate bilaterians is accompanied by expansions in the protocadherin and C2H2 zinc-finger transcription factor families and large-scale genome rearrangements closely associated with octopus-specific transposable elements.
Octopus genome reveals secrets of a complex cephalopod
Octopuses have been called 'the most intelligent invertebrate', with a host of complex behaviours, and a nervous system comparable in size to that of mammals but organized in a very different manner. It had been hypothesized that, as in vertebrates, whole-genome duplication contributed to the evolution of this complex nervous system. Caroline Albertin
et al
. have sequenced the genome and multiple transcriptomes of the California two-spot octopus (
Octopus bimaculoides
) and find no evidence for such duplications but there are large-scale genome rearrangements closely associated with octopus-specific transposable elements. The core developmental and neuronal gene repertoire turns out to be broadly similar to that of other invertebrates, apart from expansions in two gene families formerly thought to be uniquely expanded in vertebrates — the protocadherins (cell-adhesion molecules that regulate neural development) and the C2H2 superfamily of zinc-finger transcription factors.
Coleoid cephalopods (octopus, squid and cuttlefish) are active, resourceful predators with a rich behavioural repertoire
1
. They have the largest nervous systems among the invertebrates
2
and present other striking morphological innovations including camera-like eyes, prehensile arms, a highly derived early embryogenesis and a remarkably sophisticated adaptive colouration system
1
,
3
. To investigate the molecular bases of cephalopod brain and body innovations, we sequenced the genome and multiple transcriptomes of the California two-spot octopus,
Octopus bimaculoides
. We found no evidence for hypothesized whole-genome duplications in the octopus lineage
4
,
5
,
6
. The core developmental and neuronal gene repertoire of the octopus is broadly similar to that found across invertebrate bilaterians, except for massive expansions in two gene families previously thought to be uniquely enlarged in vertebrates: the protocadherins, which regulate neuronal development, and the C2H2 superfamily of zinc-finger transcription factors. Extensive messenger RNA editing generates transcript and protein diversity in genes involved in neural excitability, as previously described
7
, as well as in genes participating in a broad range of other cellular functions. We identified hundreds of cephalopod-specific genes, many of which showed elevated expression levels in such specialized structures as the skin, the suckers and the nervous system. Finally, we found evidence for large-scale genomic rearrangements that are closely associated with transposable element expansions. Our analysis suggests that substantial expansion of a handful of gene families, along with extensive remodelling of genome linkage and repetitive content, played a critical role in the evolution of cephalopod morphological innovations, including their large and complex nervous systems.
Journal Article
The landscape of somatic copy-number alteration across human cancers
بواسطة
Donovan, Jerry
,
Rubin, Mark A.
,
Ebert, Benjamin L.
في
631/208/2489/68
,
631/208/737
,
692/699/67
2010
A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the
BCL2
family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the
MCL1
and
BCL2L1
anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.
Cancer genomics refined
Two Articles in this issue add major data sets to the growing picture of the cancer genome. Bignell
et al
. analysed a large number of homozygous gene deletions in a collection of 746 publicly available cancer cell lines. Combined with information about hemizygous deletions of the same genes, the data suggest that many deletions found in cancer reflect the position of a gene at a fragile site in the genome, rather than as a recessive cancer gene whose loss confers a selective growth advantage. Beroukhim
et al
. present the largest data set to date on somatic copy-number variations across more than 3,000 specimens of human primary cancers. Many alterations are shared between multiple tumour types. Functional experiments demonstrate an oncogenic role for the apoptosis genes
MCL1
and
BCL2L1
that are associated with amplifications found in many cancers.
One way of discovering genes with key roles in cancer development is to identify genomic regions that are frequently altered in human cancers. Here, high-resolution analyses of somatic copy-number alterations (SCNAs) in numerous cancer specimens provide an overview of regions of focal SCNA that are altered at significant frequency across several cancer types. An oncogenic function is also found for the anti-apoptosis genes
MCL1
and
BCL2L1
, which reside in amplified genome regions in many cancers.
Journal Article
Exome sequencing as a first-tier test for copy number variant detection: retrospective evaluation and prospective screening in 2418 cases
بواسطة
Vialard, François
,
Mesnard, Laurent
,
Taly, Jean-François
في
Aneuploidy
,
Congenital defects
,
congenital, hereditary, and neonatal diseases and abnormalities
2022
BackgroundDespite the availability of whole exome (WES) and genome sequencing (WGS), chromosomal microarray (CMA) remains the first-line diagnostic test in most rare disorders diagnostic workup, looking for copy number variations (CNVs), with a diagnostic yield of 10%–20%. The question of the equivalence of CMA and WES in CNV calling is an organisational and economic question, especially when ordering a WGS after a negative CMA and/or WES.MethodsThis study measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNVs on a retrospective cohort of 615 unrelated individuals. A prospective detection of WES-CNV on a cohort of 2418 unrelated individuals, including the 615 individuals from the validation cohort, was performed.ResultsOn the retrospective validation cohort, every CNV detectable by the method (ie, a CNV with at least one exon not in a dark zone) was accurately called (64/64 events). In the prospective cohort, 32 diagnoses were performed among the 2418 individuals with CNVs ranging from 704 bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure.ConclusionCombining single-nucleotide variant (SNV) and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare Mendelian disorders. Before considering the prescription of a WGS after a negative WES, a careful reanalysis with updated CNV calling and SNV annotation should be considered.
Journal Article
Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia
2020
Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10−6, 1.7 × 10−9, 3.5 × 10−12 and 1.0 × 10−4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
Journal Article
Functional impact of global rare copy number variation in autism spectrum disorders
بواسطة
Correia, Catarina
,
Guter, Stephen J.
,
Schellenberg, Gerard D.
في
631/208/2489/144
,
631/208/457/649
,
631/378/1689/1373
2010
The genetics of autism
The autism spectrum disorders (ASDs) are a group of conditions typically characterized by repetitive behaviour, severely restricted interests and difficulties with social interactions and communication. ASDs are highly heritable, yet the underlying genetic determinants remain largely unknown. A genome-wide analysis reveals that people with ASDs carry a higher load of rare copy-number variants — segments of DNA for which the copy number differs between individual genomes — which are either inherited or arise
de novo
. The results implicate several novel genes as ASD candidates and point to the importance of cellular proliferation, projection and motility as well as specific signalling pathways in this disorder.
The autistic spectrum disorders (ASDs) are highly heritable, yet the underlying genetic determinants remain largely unknown. Here, a genome-wide analysis of rare copy number variants (CNVs) has been carried out, revealing that ASD sufferers carry a higher load of rare, genic CNVs than do controls. Many of these CNVs are
de novo
and inherited. The results implicate several novel genes in ASDs, and point to the importance of cellular proliferation, projection and motility, as well as specific signalling pathways, in these disorders.
The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours
1
. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability
2
. Although ASDs are known to be highly heritable (∼90%)
3
, the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold,
P
= 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold,
P
= 3.4 × 10
-4
). Among the CNVs there were numerous
de novo
and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as
SHANK2, SYNGAP1
,
DLGAP2
and the X-linked
DDX53–PTCHD1
locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
Journal Article
Integrated CNV-seq, karyotyping and SNP-array analyses for effective prenatal diagnosis of chromosomal mosaicism
بواسطة
Zhang, Yanan
,
Jia, Zhengjun
,
Yang, Shuting
في
Amniotic fluid
,
Aneuploidy
,
Biomedical and Life Sciences
2021
Background
Emerging studies suggest that low‐coverage massively parallel copy number variation sequencing (CNV-seq) more sensitive than chromosomal microarray analysis (CMA) for detecting low-level mosaicism. However, a retrospective back-to-back comparison evaluating accuracy, efficacy, and incremental yield of CNV-seq compared with CMA is warranted.
Methods
A total of 72 mosaicism cases identified by karyotyping or CMA were recruited to the study. There were 67 mosaic samples co-analysed by CMA and CNV-seq, comprising 40 with sex chromosome aneuploidy, 22 with autosomal aneuploidy and 5 with large cryptic genomic rearrangements.
Results
Of the 67 positive mosaic cases, the levels of mosaicism defined by CNV-seq ranged from 6 to 92% compared to the ratio from 3 to 90% by karyotyping and 20% to 72% by CMA. CNV-seq not only identified all 43 chromosomal aneuploidies or large cryptic genomic rearrangements detected by CMA, but also provided a 34.88% (15/43) increased yield compared with CMA. The improved yield of mosaicism detection by CNV-seq was largely due to the ability to detect low level mosaicism below 20%.
Conclusion
In the context of prenatal diagnosis, CNV-seq identified additional and clinically significant mosaicism with enhanced resolution and increased sensitivity. This study provides strong evidence for applying CNV-seq as an alternative to CMA for detection of aneuploidy and mosaic variants.
Journal Article
Titin copy number variations associated with dominant inherited phenotypes
بواسطة
Métay, Corinne
,
D'Amico, Adele
,
Savarese, Marco
في
Bioinformatics
,
Biopsy
,
Cardiac muscle
2024
BackgroundTitinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype–phenotype associations.MethodsOur study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients’ muscles and performed genotype–phenotype inheritance association study by combining the clinical and biological data of these eight families.ResultsSeven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype–phenotype associations of titinopathies.ConclusionIdentifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype–phenotype associations of titinopathies, mainly distal myopathy in most of the patients.
Journal Article
An evaluation of copy number variation detection tools for cancer using whole exome sequencing data
2017
Background
Recently copy number variation (CNV) has gained considerable interest as a type of genomic/genetic variation that plays an important role in disease susceptibility. Advances in sequencing technology have created an opportunity for detecting CNVs more accurately. Recently whole exome sequencing (WES) has become primary strategy for sequencing patient samples and study their genomics aberrations. However, compared to whole genome sequencing, WES introduces more biases and noise that make CNV detection very challenging. Additionally, tumors’ complexity makes the detection of cancer specific CNVs even more difficult. Although many CNV detection tools have been developed since introducing NGS data, there are few tools for somatic CNV detection for WES data in cancer.
Results
In this study, we evaluated the performance of the most recent and commonly used CNV detection tools for WES data in cancer to address their limitations and provide guidelines for developing new ones. We focused on the tools that have been designed or have the ability to detect cancer somatic aberrations. We compared the performance of the tools in terms of sensitivity and false discovery rate (FDR) using real data and simulated data. Comparative analysis of the results of the tools showed that there is a low consensus among the tools in calling CNVs. Using real data, tools show moderate sensitivity (~50% - ~80%), fair specificity (~70% - ~94%) and poor FDRs (~27% - ~60%). Also, using simulated data we observed that increasing the coverage more than 10× in exonic regions does not improve the detection power of the tools significantly.
Conclusions
The limited performance of the current CNV detection tools for WES data in cancer indicates the need for developing more efficient and precise CNV detection methods. Due to the complexity of tumors and high level of noise and biases in WES data, employing advanced novel segmentation, normalization and de-noising techniques that are designed specifically for cancer data is necessary. Also, CNV detection development suffers from the lack of a gold standard for performance evaluation. Finally, developing tools with user-friendly user interfaces and visualization features can enhance CNV studies for a broader range of users.
Journal Article