Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
8,417
result(s) for
"Coral Reef Fishes"
Sort by:
The Correlation of Coral Reef Cover and Rugosity with Coral Reef Fish Density in East Java Waters
2020
HighlightsCoral cover, rugosity, and reef fish abundance was determinedThe relationship between coral cover and rugosity and fish abundance was analyzed.Coral cover in East Java were categorized as medium – good.The rugosity index and the fish abundance were highest in Bangsring Waters.There are no relationships between coral cover and fish abundance, but there is relationship between rugosity and fish abundance.AbstractA coral reef is one of the most complex and specific ecosystems in a tropical area. It is identified by its high productivity and biodiversity. This research aims to discover the percentage of coral reef cover and rugosity, as well as the fish abundance in several locations in East Java, Indonesia. In addition, this research aims to investigate the correlation of coral reef cover and rugosity with the density of coral reef fish. This research was conducted in three locations, i.e., Bangsring Waters of Wongsorejo District, Banyuwangi Regency; Gili Noko Bawean Island, Gresik Regency; and Kramat Island, Gili Genting District, Sumenep Regency. This research employed the Line Intercept Transect (LIT) method to calculate the percentage of coral reef cover, the Chain Intercept Transect (CIT) method to determine the coral reef rugosity, and the Belt Transect method to estimate the fish abundance. From this research, it was revealed that the highest coral reef cover was in Bawean waters, while the highest rugosity was in Bangring waters. In addition, the highest coral reef fish density was in Bangsring waters. Meanwhile, the coral reef fish density did not correlate with the percentage of coral reef cover. In contrast, it correlated with the coral reef rugosity.
Journal Article
Predator effects on reef fish settlement depend on predator origin and recruit density
2017
During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics.
Journal Article
Coral reef fishes : dynamics and diversity in a complex ecosystem
2002
Coral Reef Fishes is the successor of The Ecology of Fishes on Coral Reefs.This new edition includes provocative reviews covering the major areas of reef fish ecology.Concerns about the future health of coral reefs, and recognition that reefs and their fishes are economically important components of the coastal oceans of many tropical nations.
The meaning of the term ‘function’ in ecology
by
Streit, Robert P.
,
Tebbett, Sterling B.
,
Brandl, Simon J.
in
Anthropocene
,
Biodiversity
,
Community structure
2019
The inherent complexity of high‐diversity systems can make them particularly difficult to understand. The relatively recent introduction of functional approaches, which seek to infer ecosystem functioning based on species’ ecological traits, has revolutionized our understanding of these high‐diversity systems. Today, the functional structure of an assemblage is widely regarded as a key indicator of the status or resilience of an ecosystem. Indeed, functional evaluations have become a mainstay of monitoring and management approaches. But is the heavy focus on broad metrics of functional structure grounded in empirical research? On tropical coral reefs, the ocean’s most diverse ecosystems, remarkably few studies directly quantify ecosystem functions and the term ‘function’ is widely used but rarely defined, especially when applied to reef fishes. Our review suggests that most ‘functional’ studies do not study function as it relates to ecological processes. Rather, they look at easy‐to‐measure traits or proxies that are thought to have functional significance. However, these links are rarely tested empirically, severely limiting our capacity to extend results from community structure to the dynamic processes operating within high‐diversity ecosystems such as coral reefs. With rapid changes in global ecosystems, and in their capacity to deliver ecosystem services, there is an urgent need to understand and empirically measure the role of organisms in various ecosystem functions. We suggest that if we are to understand and manage transitioning coral reefs in the Anthropocene, a broad definition of the word ‘function’ is needed along with a focus on ecological processes and the empirical quantification of functional roles. In this review, we propose a universal operational definition of the term ‘function’ that works from a cellular to a global level. Specifically, it is the movement or storage of energy or material. Within this broad definitional framework, all functions are part of a continuum that is tied together by the process‐based unifier of material fluxes. With this universal definition at hand, we then present a path forward that will allow us to fully harness the power of functional approaches in understanding and managing high‐diversity systems such as coral reefs. A plain language summary is available for this article. Plain Language Summary
Journal Article
Relationships between structural complexity, coral traits, and reef fish assemblages
by
Emily S. Darling
,
Fraser A. Januchowski-Hartley
,
Morgan S. Pratchett
in
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
,
[SDE.MCG]Environmental Sciences/Global Changes
,
[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems
2017
With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia’s Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.
Journal Article
The importance of structural complexity in coral reef ecosystems
by
Graham, N. A. J.
,
Nash, K. L.
in
Agnatha. Pisces
,
Animal and plant ecology
,
Animal, plant and microbial ecology
2013
The importance of structural complexity in coral reefs has come to the fore with the global degradation of reef condition; however, the limited scale and replication of many studies have restricted our understanding of the role of complexity in the ecosystem. We qualitatively and quantitatively (where sufficient standardised data were available) assess the literature regarding the role of structural complexity in coral reef ecosystems. A rapidly increasing number of publications have studied the role of complexity in reef ecosystems over the past four decades, with a concomitant increase in the diversity of methods used to quantify structure. Quantitative analyses of existing data indicate a strong negative relationship between structural complexity and algal cover, which may reflect the important role complexity plays in enhancing herbivory by reef fishes. The cover of total live coral and branching coral was positively correlated with structural complexity. These habitat attributes may be creating much of the structure, resulting in a collinear relationship; however, there is also evidence of enhanced coral recovery from disturbances where structural complexity is high. Urchin densities were negatively correlated with structural complexity; a relationship that may be driven by urchins eroding reef structure or by their gregarious behaviour when in open space. There was a strong positive relationship between structural complexity and fish density and biomass, likely mediated through density-dependent competition and refuge from predation. More variable responses were found when assessing individual fish families, with all families examined displaying a positive relationship to structural complexity, but only half of these relationships were significant. Although only corroborated with qualitative data, structural complexity also seems to have a positive effect on two ecosystem services: tourism and shoreline protection. Clearly, structural complexity is an integral component of coral reef ecosystems, and it should be incorporated into monitoring programs and management objectives.
Journal Article
Coral cover a stronger driver of reef fish trophic biomass than fishing
2021
An influential paradigm in coral reef ecology is that fishing causes trophic cascades through reef fish assemblages, resulting in reduced herbivory and thus benthic phase shifts from coral to algal dominance. Few long-term field tests exist of how fishing affects the trophic structure of coral reef fish assemblages, and how such changes affect the benthos. Alternatively, benthic change itself may drive the trophic structure of reef fish assemblages. Reef fish trophic structure and benthic cover were quantified almost annually from 1983 to 2014 at two small Philippine islands (Apo, Sumilon). At each island a No-Take Marine Reserve (NTMR) site and a site open to subsistence reef fishing were monitored. Thirteen trophic groups were identified. Large planktivores often accounted for >50% of assemblage biomass. Significant NTMR effects were detected at each island for total fish biomass, but for only 2 of 13 trophic components: generalist large predators and large planktivores. Fishing-induced changes in biomass of these components had no effect on live hard coral (HC) cover. In contrast, HC cover affected biomass of 11 of 13 trophic components significantly. Positive associations with HC cover were detected for total fish biomass, generalist large predators, piscivores, obligate coral feeders, large planktivores, and small planktivores. Negative associations with HC cover were detected for large benthic foragers, detritivores, excavators, scrapers, and sand feeders. These associations of fish biomass to HC cover were most clear when environmental disturbances (e.g., coral bleaching, typhoons) reduced HC cover, often quickly (1–2 yr), and when HC recovered, often slowly (5–10 yr). As HC cover changed, the biomass of 11 trophic components of the fish assemblage changed. Benthic and fish assemblages were distinct at all sites from the outset, remaining so for 31 yr, despite differences in fishing pressure and disturbance history. HC cover alone explained ~30% of the variability in reef fish trophic structure, whereas fishing alone explained 24%. Furthermore, HC cover affected more trophic groups more strongly than fishing. Management of coral reefs must include measures to maintain coral reef habitats, not just measures to reduce fishing by NTMRs.
Journal Article
Patchy delivery of functions undermines functional redundancy in a high diversity system
by
Cumming, Graeme S.
,
Streit, Robert P.
,
Bellwood, David R.
in
Algae
,
animal tracking
,
Anthropogenic factors
2019
Globally, many ecosystems are being challenged and transformed by anthropogenic climate change. Future ecosystem configurations will be heavily influenced by the critical ecological functions that affect resilience. Robust measures of these functions will thus be essential for understanding and responding to ecological change. Coral reefs are experiencing unprecedented ecological change due to global mass coral bleaching. After bleaching events and other disturbances, herbivorous fishes provide functions that are critical for reef resilience by controlling harmful proliferation of algae. Identifying functional diversity amongst herbivorous fishes has been a mainstay of reef fish research, but it has remained unclear how, and to what extent, functional diversity translates to functional impacts on reefs. Rather than assessing the functional potential of the herbivorous fish community, we explicitly considered the delivery of herbivory to the reef by quantifying, in unprecedented detail, the spatial extent and overlap of feeding areas across different functional groups. Core feeding areas were highly concentrated and consistently covered just 14% of available reef space. Overlap across functional groups was limited, showing high spatial complementarity as functional groups tended to feed next to one another. Thus, the delivery of critical ecosystem processes was patchy, effectively reducing functional redundancy, even in the presence of a diverse fish assemblage. Our findings caution against assumptions of spatial homogeneity in the delivery of critical ecosystem functions. The functional impact of local herbivorous fish assemblages in current approaches may be overestimated, potentially leading to skewed assessments of reef resilience. Our results highlight the need to incorporate collective animal behaviour and spatio‐temporal scales into future assessments of ecosystem functions and ultimately ecological resilience. A plain language summary is available for this article. Plain Language Summary
Journal Article
Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes
by
López Pérez, Andres
,
Chabanet, Pascale
,
Wilson, Shaun K.
in
Animals
,
Anthropogenic factors
,
Biodiversity
2011
Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas.
Journal Article