Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
61,326 result(s) for "Coral Reefs"
Sort by:
Coral reefs
A brief introduction to coral reefs, including where they are found, how they grow, what lives in them, their importance, and efforts being made to protect and restore them.
Global warming impairs stock–recruitment dynamics of corals
Changes in disturbance regimes due to climate change are increasingly challenging the capacity of ecosystems to absorb recurrent shocks and reassemble afterwards, escalating the risk of widespread ecological collapse of current ecosystems and the emergence of novel assemblages 1 – 3 . In marine systems, the production of larvae and recruitment of functionally important species are fundamental processes for rebuilding depleted adult populations, maintaining resilience and avoiding regime shifts in the face of rising environmental pressures 4 , 5 . Here we document a regional-scale shift in stock–recruitment relationships of corals along the Great Barrier Reef—the world’s largest coral reef system—following unprecedented back-to-back mass bleaching events caused by global warming. As a consequence of mass mortality of adult brood stock in 2016 and 2017 owing to heat stress 6 , the amount of larval recruitment declined in 2018 by 89% compared to historical levels. For the first time, brooding pocilloporids replaced spawning acroporids as the dominant taxon in the depleted recruitment pool. The collapse in stock–recruitment relationships indicates that the low resistance of adult brood stocks to repeated episodes of coral bleaching is inexorably tied to an impaired capacity for recovery, which highlights the multifaceted processes that underlie the global decline of coral reefs. The extent to which the Great Barrier Reef will be able to recover from the collapse in stock–recruitment relationships remains uncertain, given the projected increased frequency of extreme climate events over the next two decades 7 . A regional-scale shift in the relationships between adult stock and recruitment of corals occurred along the Great Barrier Reef, following mass bleaching events in 2016 and 2017 caused by global warming.
Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching
Global warming is markedly changing diverse coral reef ecosystems through an increasing frequency and magnitude of mass bleaching events 1 – 3 . How local impacts scale up across affected regions depends on numerous factors, including patchiness in coral mortality, metabolic effects of extreme temperatures on populations of reef-dwelling species 4 and interactions between taxa. Here we use data from before and after the 2016 mass bleaching event to evaluate ecological changes in corals, algae, fishes and mobile invertebrates at 186 sites along the full latitudinal span of the Great Barrier Reef and western Coral Sea. One year after the bleaching event, reductions in live coral cover of up to 51% were observed on surveyed reefs that experienced extreme temperatures; however, regional patterns of coral mortality were patchy. Consistent declines in coral-feeding fishes were evident at the most heavily affected reefs, whereas few other short-term responses of reef fishes and invertebrates could be attributed directly to changes in coral cover. Nevertheless, substantial region-wide ecological changes occurred that were mostly independent of coral loss, and instead appeared to be linked directly to sea temperatures. Community-wide trophic restructuring was evident, with weakening of strong pre-existing latitudinal gradients in the diversity of fishes, invertebrates and their functional groups. In particular, fishes that scrape algae from reef surfaces, which are considered to be important for recovery after bleaching 2 , declined on northern reefs, whereas other herbivorous groups increased on southern reefs. The full impact of the 2016 bleaching event may not be realized until dead corals erode during the next decade 5 , 6 . However, our short-term observations suggest that the recovery processes, and the ultimate scale of impact, are affected by functional changes in communities, which in turn depend on the thermal affinities of local reef-associated fauna. Such changes will vary geographically, and may be particularly acute at locations where many fishes and invertebrates are close to their thermal distribution limits 7 . Fish and invertebrate communities transformed across the span of the Great Barrier Reef following the 2016 bleaching event due to a decline in coral-feeding fishes resulting from coral loss, and because of different regional responses of key trophic groups to the direct effect of temperature.
Coral microbiome dynamics, functions and design in a changing world
Corals associate not only with dinoflagellates, which are their algal endosymbionts and which have been extensively studied over the past four decades, but also with a variety of other microorganisms. The coral microbiome includes dinoflagellates, viruses, fungi, archaea and bacteria, with knowledge of the latter growing rapidly. This Review focuses on the bacterial members of the coral microbiome and draws parallels with better-studied microbiomes in other biological systems. We synthesize current understanding of spatial, temporal and host-specific patterns in coral-associated bacterial communities, the drivers shaping these patterns, and the role of the microbiome in acclimatization and adaptation of the host to climate warming. We discuss how this knowledge can be harnessed to assist the future persistence of coral reefs and provide novel perspectives for the development of microbiome engineering and its implications for coral reef conservation and restoration.
Do you really want to visit a coral reef?
\"A child goes on a deep-sea diving adventure in the Great Barrier Reef in Australia, learning about the ocean, and encountering animals and plants that make their homes in this biome. Includes world map of coral reefs and glossary\"-- Provided by publisher.
The Tara Pacific expedition—A pan-ecosystemic approach of the “-omics” complexity of coral reef holobionts across the Pacific Ocean
Coral reefs are the most diverse habitats in the marine realm. Their productivity, structural complexity, and biodiversity critically depend on ecosystem services provided by corals that are threatened because of climate change effects-in particular, ocean warming and acidification. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates, associated viruses, bacteria, and other microeukaryotes. In particular, the mandatory photosymbiosis with microalgae of the family Symbiodiniaceae and its consequences on the evolution, physiology, and stress resilience of the coral holobiont have yet to be fully elucidated. The functioning of the holobiont as a whole is largely unknown, although bacteria and viruses are presumed to play roles in metabolic interactions, immunity, and stress tolerance. In the context of climate change and anthropogenic threats on coral reef ecosystems, the Tara Pacific project aims to provide a baseline of the \"-omics\" complexity of the coral holobiont and its ecosystem across the Pacific Ocean and for various oceanographically distinct defined areas. Inspired by the previous Tara Oceans expeditions, the Tara Pacific expedition (2016-2018) has applied a pan-ecosystemic approach on coral reefs throughout the Pacific Ocean, drawing an east-west transect from Panama to Papua New Guinea and a south-north transect from Australia to Japan, sampling corals throughout 32 island systems with local replicates. Tara Pacific has developed and applied state-of-the-art technologies in very-high-throughput genetic sequencing and molecular analysis to reveal the entire microbial and chemical diversity as well as functional traits associated with coral holobionts, together with various measures on environmental forcing. This ambitious project aims at revealing a massive amount of novel biodiversity, shedding light on the complex links between genomes, transcriptomes, metabolomes, organisms, and ecosystem functions in coral reefs and providing a reference of the biological state of modern coral reefs in the Anthropocene.
Exploring coral reefs
\"Join intrepid explorers Benjamin Blog and his inquisitive dog Barko Polo as they travel the globe exploring the world's most exciting habitats! This book looks at coral reefs around the world, taking in a multitude of algae, polyps, fish, and other marine life along the way.\"--Provided by publisher.
Microbial indicators of environmental perturbations in coral reef ecosystems
Background Coral reefs are facing unprecedented pressure on local and global scales. Sensitive and rapid markers for ecosystem stress are urgently needed to underpin effective management and restoration strategies. Although the fundamental contribution of microbes to the stability and functioning of coral reefs is widely recognised, it remains unclear how different reef microbiomes respond to environmental perturbations and whether microbiomes are sensitive enough to predict environmental anomalies that can lead to ecosystem stress. However, the lack of coral reef microbial baselines hinders our ability to study the link between shifts in microbiomes and ecosystem stress. In this study, we established a comprehensive microbial reference database for selected Great Barrier Reef sites to assess the diagnostic value of multiple free-living and host-associated reef microbiomes to infer the environmental state of coral reef ecosystems. Results A comprehensive microbial reference database, originating from multiple coral reef microbiomes (i.e. seawater, sediment, corals, sponges and macroalgae), was generated by 16S rRNA gene sequencing for 381 samples collected over the course of 16 months. By coupling this database to environmental parameters, we showed that the seawater microbiome has the greatest diagnostic value to infer shifts in the surrounding reef environment. In fact, 56% of the observed compositional variation in the microbiome was explained by environmental parameters, and temporal successions in the seawater microbiome were characterised by uniform community assembly patterns. Host-associated microbiomes, in contrast, were five-times less responsive to the environment and their community assembly patterns were generally less uniform. By applying a suite of indicator value and machine learning approaches, we further showed that seawater microbial community data provide an accurate prediction of temperature and eutrophication state (i.e. chlorophyll concentration and turbidity). Conclusion Our results reveal that free-living microbial communities have a high potential to infer environmental parameters due to their environmental sensitivity and predictability. This highlights the diagnostic value of microorganisms and illustrates how long-term coral reef monitoring initiatives could be enhanced by incorporating assessments of microbial communities in seawater. We therefore recommend timely integration of microbial sampling into current coral reef monitoring initiatives.