Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,167 result(s) for "Core Binding Factor Alpha 2 Subunit - genetics"
Sort by:
ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells
ZBTB7A is frequently mutated in acute myeloid leukemia (AML) with t(8;21) translocation. However, the oncogenic collaboration between mutated ZBTB7A and the RUNX1–RUNX1T1 fusion gene in AML t(8;21) remains unclear. Here, we investigate the role of ZBTB7A and its mutations in the context of normal and malignant hematopoiesis. We demonstrate that clinically relevant ZBTB7A mutations in AML t(8;21) lead to loss of function and result in perturbed myeloid differentiation with block of the granulocytic lineage in favor of monocytic commitment. In addition, loss of ZBTB7A increases glycolysis and hence sensitizes leukemic blasts to metabolic inhibition with 2-deoxy-d-glucose. We observed that ectopic expression of wild-type ZBTB7A prevents RUNX1-RUNX1T1-mediated clonal expansion of human CD34+ cells, whereas the outgrowth of progenitors is enabled by ZBTB7A mutation. Finally, ZBTB7A expression in t(8;21) cells lead to a cell cycle arrest that could be mimicked by inhibition of glycolysis. Our findings suggest that loss of ZBTB7A may facilitate the onset of AML t(8;21), and that RUNX1-RUNX1T1-rearranged leukemia might be treated with glycolytic inhibitors.
Clinical significance of ASXL2 and ZBTB7A mutations and C-terminally truncated RUNX1-RUNX1T1 expression in AML patients with t(8;21) enrolled in the JALSG AML201 study
We analyzed the clinical significance and genetic features of ASXL2 and ZBTB7A mutations, and the alternatively spliced isoform of the RUNX1-RUNX1T1 transcript, which is also called AML1-ETO9a (AE9a), in Japanese CBF-AML patients enrolled in the JALSG AML201 study. ASXL2 and ZBTB7A genes were sequenced using bone marrow samples of 41 AML patients with t(8;21) and 14 with inv(16). The relative expression levels of AE9a were quantified using the real-time PCR assay in 23 AML patients with t(8;21). We identified ASXL2 (34.1%) and ZBTB7A (9.8%) mutations in only AML patients with t(8;21). ASXL2-mutated patients had a significantly higher WBC count at diagnosis (P = 0.04) and a lower frequency of sex chromosome loss than wild-type patients (33 vs. 76%, respectively, P = 0.01). KIT mutations were the most frequently accompanied with both ASXL2 (36%) and ZBTB7A (75%) mutations. Neither ASXL2 nor ZBTB7A mutations had an impact on overall or event-free survival. Patients harboring cohesin complex gene mutations expressed significantly higher levels of AE9a than unmutated patients (P = 0.03). In conclusion, ASXL2 and ZBTB7A mutations were frequently identified in Japanese AML patients with t(8;21), but not in those with inv(16). Further analysis is required to clarify the detailed biological mechanism of AE9a regulation of the cohesin complex.
Modulation of the ETV6::RUNX1 Gene Fusion Prevalence in Newborns by Corticosteroid Use During Pregnancy
ETV6::RUNX1-positive pediatric acute lymphoblastic leukemia frequently has a prenatal origin and follows a two-hit model: a first somatic alteration leads to the formation of the oncogenic fusion gene ETV6::RUNX1 and the generation of a preleukemic clone in utero. Secondary hits after birth are necessary to convert the preleukemic clone into clinically overt leukemia. However, prenatal factors triggering the first hit have not yet been determined. Here, we explore the influence of maternal factors during pregnancy on the prevalence of the ETV6::RUNX1 fusion. To this end, we employed a nested interventional cohort study (IMPACT-BCN trial), including 1221 pregnancies (randomized into usual care, a Mediterranean diet, or mindfulness-based stress reduction) and determined the prevalence of the fusion gene in the DNA of cord blood samples at delivery (n = 741) using the state-of-the-art GIPFEL (genomic inverse PCR for exploration of ligated breakpoints) technique. A total of 6.5% (n = 48 of 741) of healthy newborns tested positive for ETV6::RUNX1. Our multiple regression analyses showed a trend toward lower ETV6::RUNX1 prevalence in offspring of the high-adherence intervention groups. Strikingly, corticosteroid use for lung maturation during pregnancy was significantly associated with ETV6::RUNX1 (adjusted OR 3.9, 95% CI 1.6–9.8) in 39 neonates, particularly if applied before 26 weeks of gestation (OR 7.7, 95% CI 1.08–50) or if betamethasone (OR 4.0, 95% CI 1.4–11.3) was used. Prenatal exposure to corticosteroids within a critical time window may therefore increase the risk of developing ETV6::RUNX1+ preleukemic clones and potentially leukemia after birth. Taken together, this study indicates that ETV6::RUNX1 preleukemia prevalence may be modulated and potentially prevented.
Allogeneic hematopoietic stem cell transplantation can improve the prognosis of high-risk pediatric t(8;21) acute myeloid leukemia in first remission based on MRD-guided treatment
Background Pediatric acute myeloid leukemia (AML) with t(8;21) (q22;q22) is classified as a low-risk group. However, relapse is still the main factor affecting survival. We aimed to investigate the effect of allogeneic hematopoietic stem cell transplantation (allo-HSCT) on reducing recurrence and improving the survival of high-risk pediatric t(8;21) AML based on minimal residual disease (MRD)-guided treatment, and to further explore the prognostic factors to guide risk stratification treatment and identify who will benefit from allo-HSCT. Methods Overall, 129 newly diagnosed pediatric t(8;21) AML patients were included in this study. Patients were divided into high-risk and low-risk group according to RUNX1-RUNX1T1 transcript levels after 2 cycles of consolidation chemotherapy. High-risk patients were divided into HSCT group and chemotherapy group according to their treatment choices. The characteristics and outcomes of 125 patients were analyzed. Results For high-risk patients, allo-HSCT could improve 5-year relapse-free survival (RFS) rate compared to chemotherapy (87.4% vs. 61.9%; P  = 0.026). Five-year overall survival (OS) rate in high-risk HSCT group had a trend for better than that in high-risk chemotherapy group (82.8% vs. 71.4%; P  = 0.260). The 5-year RFS rate of patients with a c-KIT mutation in high-risk HSCT group had a trend for better than that of patients with a c-KIT mutation in high-risk chemotherapy group (82.9% vs. 75%; P  = 0.400). Extramedullary infiltration (EI) at diagnosis was associated with a high cumulative incidence of relapse for high-risk patients (50% vs. 18.4%; P  = 0.004); allo-HSCT can improve the RFS ( P  = 0.009). Conclusions allo-HSCT can improve the prognosis of high-risk pediatric t(8;21) AML based on MRD-guided treatment. Patients with a c-KIT mutation may benefit from allo-HSCT. EI is an independent prognostic factor for high-risk patients and allo-HSCT can improve the prognosis.
Runx1 is a central regulator of osteogenesis for bone homeostasis by orchestrating BMP and WNT signaling pathways
Runx1 is highly expressed in osteoblasts, however, its function in osteogenesis is unclear. We generated mesenchymal progenitor-specific ( Runx1 f/f Twist2-Cre) and osteoblast-specific ( Runx1 f/f Col1α1-Cre ) conditional knockout (Runx1 CKO) mice. The mutant CKO mice with normal skeletal development displayed a severe osteoporosis phenotype at postnatal and adult stages. Runx1 CKO resulted in decreased osteogenesis and increased adipogenesis. RNA-sequencing analysis, Western blot, and qPCR validation of Runx1 CKO samples showed that Runx1 regulates BMP signaling pathway and Wnt/β-catenin signaling pathway. ChIP assay revealed direct binding of Runx1 to the promoter regions of Bmp7 , Alk3 , and Atf4 , and promoter mapping demonstrated that Runx1 upregulates their promoter activity through the binding regions. Bmp7 overexpression rescued Alk3, Runx2, and Atf4 expression in Runx1 -deficient BMSCs. Runx2 expression was decreased while Runx1 was not changed in Alk3 deficient osteoblasts. Atf4 overexpression in Runx1 -deficient BMSCs did not rescue expression of Runx1, Bmp7, and Alk3. Smad1/5/8 activity was vitally reduced in Runx1 CKO cells, indicating Runx1 positively regulates the Bmp7/Alk3/Smad1/5/8/Runx2/ATF4 signaling pathway. Notably, Runx1 overexpression in Runx2 -/- osteoblasts rescued expression of Atf4, OCN, and ALP to compensate Runx2 function. Runx1 CKO mice at various osteoblast differentiation stages reduced Wnt signaling and caused high expression of C/ebpα and Pparγ and largely increased adipogenesis. Co-culture of Runx1 -deficient and wild-type cells demonstrated that Runx1 regulates osteoblast−adipocyte lineage commitment both cell-autonomously and non-autonomously. Notably, Runx1 overexpression rescued bone loss in OVX-induced osteoporosis. This study focused on the role of Runx1 in different cell populations with regards to BMP and Wnt signaling pathways and in the interacting network underlying bone homeostasis as well as adipogenesis, and has provided new insight and advancement of knowledge in skeletal development. Collectively, Runx1 maintains adult bone homeostasis from bone loss though up-regulating Bmp7/Alk3/Smad1/5/8/Runx2/ATF4 and WNT/β-Catenin signaling pathways, and targeting Runx1 potentially leads to novel therapeutics for osteoporosis.
FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis
The role of Fat Mass and Obesity-associated protein (FTO) and its substrate N6-methyladenosine (m6A) in mRNA processing and adipogenesis remains largely unknown. We show that FTO expression and m6A levels are inversely correlated during adipogenesis. FTO depletion blocks differentiation and only catalytically active FTO restores adi- pogenesis. Transcriptome analyses in combination with m6A-seq revealed that gene expression and mRNA splicing of grouped genes are regulated by FTO. M6A is enriched in exonic regions flanking 5'- and 3'-splice sites, spatially over- lapping with mRNA splicing regulatory serine/arginine-rich (SR) protein exonic splicing enhancer binding regions. Enhanced levels of m6A in response to FTO depletion promotes the RNA binding ability of SRSF2 protein, leading to increased inclusion of target exons. FTO controls exonic splicing of adipogenie regulatory factor RUNX1T1 by regulating m6A levels around splice sites and thereby modulates differentiation. These findings provide compelling evidence that FTO-dependent m6A demethylation functions as a novel regulatory mechanism of RNA processing and plays a critical role in the regulation of adipogenesis.
Functional genomic landscape of acute myeloid leukaemia
The implementation of targeted therapies for acute myeloid leukaemia (AML) has been challenging because of the complex mutational patterns within and across patients as well as a dearth of pharmacologic agents for most mutational events. Here we report initial findings from the Beat AML programme on a cohort of 672 tumour specimens collected from 562 patients. We assessed these specimens using whole-exome sequencing, RNA sequencing and analyses of ex vivo drug sensitivity. Our data reveal mutational events that have not previously been detected in AML. We show that the response to drugs is associated with mutational status, including instances of drug sensitivity that are specific to combinatorial mutational events. Integration with RNA sequencing also revealed gene expression signatures, which predict a role for specific gene networks in the drug response. Collectively, we have generated a dataset—accessible through the Beat AML data viewer (Vizome)—that can be leveraged to address clinical, genomic, transcriptomic and functional analyses of the biology of AML. Analyses of samples from patients with acute myeloid leukaemia reveal that drug response is associated with mutational status and gene expression; the generated dataset provides a basis for future clinical and functional studies of this disease.
Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes
Retinal ganglion cells (RGCs) convey the major output of information collected from the eye to the brain. Thirty subtypes of RGCs have been identified to date. Here, we analyze 6225 RGCs (average of 5000 genes per cell) from right and left eyes by single-cell RNA-seq and classify them into 40 subtypes using clustering algorithms. We identify additional subtypes and markers, as well as transcription factors predicted to cooperate in specifying RGC subtypes. Zic1, a marker of the right eye-enriched subtype, is validated by immunostaining in situ. Runx1 and Fst, the markers of other subtypes, are validated in purified RGCs by fluorescent in situ hybridization (FISH) and immunostaining. We show the extent of gene expression variability needed for subtype segregation, and we show a hierarchy in diversification from a cell-type population to subtypes. Finally, we present a website for comparing the gene expression of RGC subtypes. Retinal ganglion cells (RGCs) are diverse in cellular function and physiology. This study demonstrates additional RGC heterogeneity using single cell transcriptomic analyses to classify 40 classes of RGCs in early postnatal mice before eye opening.
Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice
Proprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles. Altogether, these features contribute to finely regulate proprioception during complex motor behavior. Moreover, while Ib- and II-PN subtypes are specified around birth, Ia-PN subtypes diversify later in life along with increased motor activity. We also show Ia-PNs plasticity following exercise training, suggesting Ia-PNs are important players in adaptive proprioceptive function in adult mice. Molecular diversity of proprioceptive neuron types (Ia, Ib and II PNs) is unclear. Here, the authors characterized the functional organization and development of eight subtypes of PNs in mice. Importantly, Ia subtypes are plastic, suggesting a role in adaptive proprioception during motor behavior.
Runx/Cbfβ complexes protect group 2 innate lymphoid cells from exhausted-like hyporesponsiveness during allergic airway inflammation
Group 2 innate lymphoid cells (ILC2s) have tissue-resident competence and contribute to the pathogenesis of allergic diseases. However, the mechanisms regulating prolonged ILC2-mediated T H 2 cytokine production under chronic inflammatory conditions are unclear. Here we show that, at homeostasis, Runx deficiency induces excessive ILC2 activation due to overly active GATA-3 functions. By contrast, during allergic inflammation, the absence of Runx impairs the ability of ILC2s to proliferate and produce effector T H 2 cytokines and chemokines. Instead, functional deletion of Runx induces the expression of exhaustion markers, such as IL-10 and TIGIT, on ILC2s. Finally, these ‘exhausted-like’ ILC2s are unable to induce type 2 immune responses to repeated allergen exposures. Thus, Runx confers competence for sustained ILC2 activity at the mucosa, and contributes to allergic pathogenesis. Group 2 innate lymphoid cells (ILC2) are important mediators for allergy, but how ILC2 are regulated under chronic inflammation is still unclear. Here the authors show that Runx transcription factors, which normally suppresses ILC2 activation at steady state, help promote ILC2 activation and type 2 cytokine production in lung allergy mouse models.