Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
281
result(s) for
"Core microbiota"
Sort by:
Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies
by
Shetty, Sudarshan A.
,
Hugenholtz, Floor
,
de Vos, Willem M.
in
Adults
,
Alternative stable states
,
Antibiotics
2017
Abstract
High individuality, large complexity and limited understanding of the mechanisms underlying human intestinal microbiome function remain the major challenges for designing beneficial modulation strategies. Exemplified by the analysis of intestinal bacteria in a thousand Western adults, we discuss key concepts of the human intestinal microbiome landscape, i.e. the compositional and functional ‘core’, the presence of community types and the existence of alternative stable states. Genomic investigation of core taxa revealed functional redundancy, which is expected to stabilize the ecosystem, as well as taxa with specialized functions that have the potential to shape the microbiome landscape. The contrast between Prevotella- and Bacteroides-dominated systems has been well described. However, less known is the effect of not so abundant bacteria, for example, Dialister spp. that have been proposed to exhibit distinct bistable dynamics. Studies employing time-series analysis have highlighted the dynamical variation in the microbiome landscape with and without the effect of defined perturbations, such as the use of antibiotics or dietary changes. We incorporate ecosystem-level observations of the human intestinal microbiota and its keystone species to suggest avenues for designing microbiome modulation strategies to improve host health.
A meta-analysis-based review discusses the key features of human intestinal microbiome, i.e. the compositional and functional ‘core’, community types, and the existence of alternative stable states and how these concepts can be used to improve host health.
Journal Article
Characterization of the core gut microbiota of Nile tilapia (Oreochromis niloticus): indication of a putative novel Cetobacterium species and analysis of its potential function on nutrition
2022
The genus Cetobacterium has been considered a dominant group of gut bacteria in many freshwater fish, and members of this genus contribute to anaerobic metabolism. Because of its significant place in the gut of freshwater fish, many studies on Cetobacterium were performed. Those studies mostly focused on the temporal and spatial changes of its abundance in fish intestine, which were affected by food or other environmental conditions. However, only a few studies isolated strains from genus Cetobacterium and reported their characteristics. In the present study, we performed 16S rRNA sequencing of the intestinal mucosa of Nile tilapia (Oreochromis niloticus) and found that Cetobacterium sp. existed widely in the foregut, midgut and hindgut mucosa, and a strain of Cetobacterium was successfully isolated from the gut of tilapia. We sequenced its whole genome and predicted it to be a novel candidate species of Cetobacterium sp. and named it NK01. The size of its genome was 3,095,946 bp, with a guanine + cytosine content of 28.8%. Among the identified genes, 2855 were predicted to be coding DNA sequences, 84 were tRNA and 34 were rRNA. We found that NK01 produced amino acids, including leucine, isoleucine, valine, glycine, alanine, phenylalanine and proline. Strain NK01 could use starch, sucrose, maltose, glucose, and mannose and synthesize and utilize glycogen. INV, GPI, malQ, malZ, sacA, scrK, glgC, glgA and glk, which were related to carbohydrate metabolism, were detected. yiaY and adhE, which oxidize ethanol to acetaldehyde and participate in a variety of metabolic pathways, were also present in the genome. No coding genes directly involved in acetate or butyrate production were detected. NK01 could also catabolize a variety of vitamins, and all genes involved in folate synthesis were detected, including folP, folC, folA and eutT, which converted vitamin B12s into vitamin B12 coenzyme. Here, we investigated the draft genome and in vitro function of Cetobacterium isolated from the intestinal tract of Nile tilapia. The results provided a preliminary understanding of the core microbiota of fish gut.
Journal Article
The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis
by
Chaston, John M
,
Douglas, Angela E
,
Wong, Adam C-N
in
631/1647/334/1582/715
,
631/326/2565
,
631/326/41/547
2013
The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (
Acetobacter
and
Lactobacillus
species) in individual flies of 21 strains (10
Drosophila
species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11
Drosophila
species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of
Drosophila
species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of
D. melanogaster
. Our results yielded no consistent evidence for a core microbiota in
Drosophila.
We conclude that the taxonomic composition of gut microbiota varies widely within and among
Drosophila
populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans.
Journal Article
Core Microbiota in Agricultural Soils and Their Potential Associations with Nutrient Cycling
by
Lu, Yahai
,
Jiao, Shuo
,
Xu, Yiqin
in
Agricultural ecosystems
,
Applied and Environmental Science
,
Bacteria
2019
Disentangling the roles of the core microbiota in community maintaining and soil nutrient cycling is an important yet poorly understood topic in microbial ecology. This study presents an exploratory effort to gain predictive understanding of the spatial atlas and ecological roles of the core microbiota. A systematic, continental-scale survey was conducted using agro-soils in adjacent pairs of maize (dryland) and rice (wetland) fields across eastern China. The results indicate that the core microbiota play major ecological roles in maintaining complex connections between bacterial taxa and are associated with belowground multinutrient cycling. A continental atlas was built for mapping the bacterial spatial distributions in agro-soils through identifying their habitat preferences. This study represents a significant advance in forecasting the responses of agricultural ecosystems to anthropogenic disturbance and thus helps manage soil bacterial communities for better provisioning of key ecosystem services—the ultimate goal of microbial ecology. Revealing the ecological roles of the core microbiota in community maintaining and soil nutrient cycling is crucial for understanding ecosystem function, yet there is a dearth of continental-scale studies on this fundamental topic in microbial ecology. Here, we collected 251 soil samples from adjacent pairs of maize and rice fields at a continental scale in eastern China. We revealed the major ecological roles of the core microbiota in maintaining complex connections between bacterial taxa and their associations with belowground multinutrient cycling. By identifying the habitat preferences of the core microbiota, we built a continental atlas for mapping the spatial distributions of bacteria in agro-soils, which helps forecast the responses of agricultural ecosystems to anthropogenic disturbance. The multinutrient cycling index for maize and rice soils was related to bacterial α -diversity and β -diversity, respectively. Rice soils exhibited higher bacterial diversity and closer bacterial cooccurrence relationships than maize soils. In contrast to the macro- or microecological latitudinal richness patterns in natural terrestrial ecosystems, the bacteria in maize soils showed higher richness at high latitudes; however, this trend was not observed in rice soils. This study provides a new perspective on the distinct bacterial biogeographic patterns to predict the ecological roles of the core microbiota in agro-soils and thus helps manage soil bacterial communities for better provisioning of key ecosystem services. IMPORTANCE Disentangling the roles of the core microbiota in community maintaining and soil nutrient cycling is an important yet poorly understood topic in microbial ecology. This study presents an exploratory effort to gain predictive understanding of the spatial atlas and ecological roles of the core microbiota. A systematic, continental-scale survey was conducted using agro-soils in adjacent pairs of maize (dryland) and rice (wetland) fields across eastern China. The results indicate that the core microbiota play major ecological roles in maintaining complex connections between bacterial taxa and are associated with belowground multinutrient cycling. A continental atlas was built for mapping the bacterial spatial distributions in agro-soils through identifying their habitat preferences. This study represents a significant advance in forecasting the responses of agricultural ecosystems to anthropogenic disturbance and thus helps manage soil bacterial communities for better provisioning of key ecosystem services—the ultimate goal of microbial ecology.
Journal Article
Distinct antimicrobial peptide expression determines host species-specific bacterial associations
by
Jun Wang
,
John F. Baines
,
Sebastian Fraune
in
Animals
,
Antimicrobial Cationic Peptides - metabolism
,
antimicrobial peptides
2013
Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra . Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations.
Journal Article
Microbe-mediated stress resistance in plants: the roles played by core and stress-specific microbiota
by
Cheng, Zhen
,
Xie, Jianbo
,
Wu, Jiadong
in
Analysis
,
Bacteria - classification
,
Bacteria - genetics
2025
Background
Plants in natural surroundings frequently encounter diverse forms of stress, and microbes are known to play a crucial role in assisting plants to withstand these challenges. However, the mining and utilization of plant-associated stress-resistant microbial sub-communities from the complex microbiome remains largely elusive.
Results
This study was based on the microbial communities over 13 weeks under four treatments (control, drought, salt, and disease) to define the shared core microbiota and stress-specific microbiota. Through co-occurrence network analysis, the dynamic change networks of microbial communities under the four treatments were constructed, revealing distinct change trajectories corresponding to different treatments. Moreover, by simulating species extinction, the impact of the selective removal of microbes on network robustness was quantitatively assessed. It was found that under varying environmental conditions, core microbiota made significant potential contributions to the maintenance of network stability. Our assessment utilizing null and neutral models indicated that the assembly of stress-specific microbiota was predominantly driven by deterministic processes, whereas the assembly of core microbiota was governed by stochastic processes. We also identified the microbiome features from functional perspectives: the shared microbiota tended to enhance the ability of organisms to withstand multiple types of environmental stresses and stress-specific microbial communities were associated with the diverse mechanisms of mitigating specific stresses. Using a culturomic approach, 781 bacterial strains were isolated, and nine strains were selected to construct different SynComs. These experiments confirmed that communities containing stress-specific microbes effectively assist plants in coping with environmental stresses.
Conclusions
Collectively, we not only systematically revealed the dynamics variation patterns of rhizosphere microbiome under various stresses, but also sought constancy from the changes, identified the potential contributions of core microbiota and stress-specific microbiota to plant stress tolerance, and ultimately aimed at the beneficial microbial inoculation strategies for plants. Our research provides novel insights into understanding the microbe-mediated stress resistance process in plants.
9eYBukvoky7n9MsRGAPsz1
Video Abstract
Journal Article
The human gut microbiota in IBD, characterizing hubs, the core microbiota and terminal nodes: a network-based approach
by
Franke, Andre
,
Lieb, Wolfgang
,
Geese, Theresa
in
Adult
,
Bacteria - classification
,
Bacteria - genetics
2025
Background
Dysbiosis, an imbalance in the bacterial composition of the human gut microbiota, is linked to inflammatory bowel disease (IBD). Advances in biological techniques have generated vast microbiota datasets, presenting both opportunities and challenges for clinical research in that field. Network theory offers powerful tools to analyze these complex datasets.
Methods
Utilizing genetically unrelated individuals from the Kiel IBD-KC cohort, we compared network properties of the gut microbiota between patients with inflammatory bowel disease (IBD,
n
= 522) and healthy controls (
n
= 365), and between Crohn's disease (CD,
n
= 230) and Ulcerative Colitis (UC,
n
= 280). Correlation-based microbial networks were constructed, with genera as nodes and significant pairwise correlations as edges. We used centrality measures to identify key microbial constituents, called hubs, and suggest a network-based definition for a core microbiota. Using Graphlet theoretical approaches, we analyzed network topology and individual node roles.
Results
Global network properties differed between cases and controls, with controls showing a potentially more robust network structure characterized by e.g., a greater number of components and a lower edge density. Local network properties varied across all groups. For cases and both UC and CD,
Faecalibacterium
and
Veillonella
, and for unaffected controls
Bacteroides
,
Blautia
,
Clostridium XIVa
, and
Clostridium XVIII
emerged as unique hubs in the respective networks. Graphlet analysis revealed significant differences in terminal node orbits among all groups. Four genera which act as hubs in one state, were found to be terminal nodes in the opposite disease state:
Bacteroides
,
Clostridium XIVa
,
Faecalibacterium
, and
Subdoligranulum
. Comparing our network-based core microbiota definition with a conventional one showed an overlap in approximately half of the core taxa, while core taxa identified through our new definition maintained high abundance.
Conclusion
The network-based approach complements previous investigations of alteration of the human gut microbiota in IBD by offering a different perspective that extends beyond a focus solely on highly abundant taxa. Future studies should further investigate functional roles of hubs and terminal nodes as potential targets for interventions and preventions. Additionally, the advantages of the newly proposed network-based core microbiota definition, should be investigated more systematically.
Journal Article
Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges
2012
Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with
Proteobacteria
,
Chloroflexi
and
Poribacteria
being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations.
Journal Article
Gut Microbiota of Five Sympatrically Farmed Marine Fish Species in the Aegean Sea
2021
In this study, we hypothesized that sympatrically grown farmed fish, i.e. fish which experience similar environmental conditions and nutritionally similar diets, would have more convergent gut microbiota. Using a “common garden” approach, we identified the core microbiota and bacterial community structure differences between five fish species farmed in the same aquaculture site on the west coast of the Aegean Sea, Greece. The investigated individuals were at similar developmental stages and reared in adjacent (< 50 m) aquaculture cages; each cage had 15 kg fish m−3. The diets were nutritionally similar to support optimal growth for each fish species. DNA from the midgut of 3–6 individuals per fish species was extracted and sequenced for the V3–V4 region of the bacterial 16S rRNA. Only 3.9% of the total 181 operational taxonomic units (OTUs) were shared among all fish. Between 5 and 74 OTUs were unique to each fish species. Each of the investigated fish species had a distinct profile of dominant OTUs, i.e. cumulative relative abundance of ≥ 80%. Co-occurrence network analysis for each fish species showed that all networks were strongly dominated by positive correlations between the abundances of their OTUs. However, each fish species had different network characteristics suggesting the differential significance of the OTUs in each of the five fish species midgut. The results of the present study may provide evidence that adult fish farmed in the Mediterranean Sea have a rather divergent and species-specific gut microbiota profile, which are shaped independently of the similar environmental conditions under which they grow.
Journal Article
Core microbiota drive multi-functionality of the soil microbiome in the Cinnamomum camphora coppice planting
2024
Background
Cinnamomum camphora
(L.) Presl (
C. camphora
) is an evergreen broad-leaved tree cultivated in subtropical China. The use of
C. camphora
as clonal cuttings for coppice management has become popular recently. However, little is known about the relationship between soil core microbiota and ecosystem multi-functionality under tree planting. Particularly, the effects of soil core microbiota on maintaining ecosystem multi-functionality under
C. camphora
coppice planting remained unclear.
Materials and methods
In this study, we collected soil samples from three points (i.e., the abandoned land, the root zone, and the transition zone) in the
C. camphora
coppice planting to investigate whether core microbiota influences ecosystem multi-functions.
Results
The result showed a significant difference in soil core microbiota community between the abandoned land (AL), root zone (RZ), and transition zone (TZ), and soil ecosystem multi-functionality of core microbiota in RZ had increased significantly (by 230.8%) compared to the AL. Soil core microbiota played a more significant influence on ecosystem multi-functionality than the non-core microbiota. Moreover, the co-occurrence network demonstrated that the soil ecosystem network consisted of five major ecological clusters. Soil core microbiota within cluster 1 were significantly higher than in cluster 4, and there is also a higher
Copiotrophs/Oligotrophs
ratio in cluster 1. Our results corroborated that soil core microbiota is crucial for maintaining ecosystem multi-functionality. Especially, the core taxa within the clusters of networks under tree planting, with the same ecological preferences, had a significant contribution to ecosystem multi-functionality.
Conclusion
Overall, our results provide further insight into the linkage between core taxa and ecosystem multi-functionality. This enables us to predict how ecosystem functions respond to the environmental changes in areas under the
C. camphora
coppice planting. Thus, conserving the soil microbiota, especially the core taxa, is essential to maintaining the multiple ecosystem functions under the
C. camphora
coppice planting.
Journal Article