Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
57
result(s) for
"Coronary MR angiography"
Sort by:
3D whole-heart isotropic sub-millimeter resolution coronary magnetic resonance angiography with non-rigid motion-compensated PROST
2020
Background
To enable free-breathing whole-heart sub-millimeter resolution coronary magnetic resonance angiography (CMRA) in a clinically feasible scan time by combining low-rank patch-based undersampled reconstruction (3D-PROST) with a highly accelerated non-rigid motion correction framework.
Methods
Non-rigid motion corrected CMRA combined with 2D image-based navigators has been previously proposed to enable 100% respiratory scan efficiency in modestly undersampled acquisitions. Achieving sub-millimeter isotropic resolution with such techniques still requires prohibitively long acquisition times. We propose to combine 3D-PROST reconstruction with a highly accelerated non-rigid motion correction framework to achieve sub-millimeter resolution CMRA in less than 10 min. Ten healthy subjects and eight patients with suspected coronary artery disease underwent 4–5-fold accelerated free-breathing whole-heart CMRA with 0.9 mm
3
isotropic resolution. Vessel sharpness, vessel length and image quality obtained with the proposed non-rigid (NR) PROST approach were compared against translational correction only (TC-PROST) and a previously proposed NR motion-compensated technique (non-rigid SENSE) in healthy subjects. For the patient study, image quality scoring and visual comparison with coronary computed tomography angiography (CCTA) were performed.
Results
Average scan times [min:s] were 6:01 ± 0:59 (healthy subjects) and 8:29 ± 1:41 (patients). In healthy subjects, vessel sharpness of the left anterior descending (LAD) and right (RCA) coronary arteries were improved with the proposed non-rigid PROST (LAD: 51.2 ± 8.8%, RCA: 61.2 ± 9.1%) in comparison to TC-PROST (LAD: 43.8 ± 5.1%,
P
= 0.051, RCA: 54.3 ± 8.3%,
P
= 0.218) and non-rigid SENSE (LAD: 46.1 ± 5.8%,
P
= 0.223, RCA: 56.7 ± 9.6%,
P
= 0.50), although differences were not statistically significant. The average visual image quality score was significantly higher for NR-PROST (LAD: 3.2 ± 0.6, RCA: 3.3 ± 0.7) compared with TC-PROST (LAD: 2.1 ± 0.6,
P
= 0.018, RCA: 2.0 ± 0.7,
P
= 0.014) and non-rigid SENSE (LAD: 2.3 ± 0.5,
P
= 0.008, RCA: 2.5 ± 0.7,
P
= 0.016). In patients, the proposed approach showed good delineation of the coronaries, in agreement with CCTA, with image quality scores and vessel sharpness similar to that of healthy subjects.
Conclusions
We demonstrate the feasibility of combining high undersampling factors with non-rigid motion-compensated reconstruction to obtain high-quality sub-millimeter isotropic CMRA images in ~ 8 min. Validation in a larger cohort of patients with coronary artery disease is now warranted.
Journal Article
Motion-corrected whole-heart PET-MR for the simultaneous visualisation of coronary artery integrity and myocardial viability: an initial clinical validation
2018
PurposeCardiac PET-MR has shown potential for the comprehensive assessment of coronary heart disease. However, image degradation due to physiological motion remains a challenge that could hinder the adoption of this technology in clinical practice. The purpose of this study was to validate a recently proposed respiratory motion-corrected PET-MR framework for the simultaneous visualisation of myocardial viability (18F-FDG PET) and coronary artery anatomy (coronary MR angiography, CMRA) in patients with chronic total occlusion (CTO).MethodsA cohort of 14 patients was scanned with the proposed PET-CMRA framework. PET and CMRA images were reconstructed with and without the proposed motion correction approach for comparison purposes. Metrics of image quality including visible vessel length and sharpness were obtained for CMRA for both the right and left anterior descending coronary arteries (RCA, LAD), and relative increase in 18F-FDG PET signal after motion correction for standard 17-segment polar maps was computed. Resulting coronary anatomy by CMRA and myocardial integrity by PET were visually compared against X-ray angiography and conventional Late Gadolinium Enhancement (LGE) MRI, respectively.ResultsMotion correction increased CMRA visible vessel length by 49.9% and 32.6% (RCA, LAD) and vessel sharpness by 12.3% and 18.9% (RCA, LAD) on average compared to uncorrected images. Coronary lumen delineation on motion-corrected CMRA images was in good agreement with X-ray angiography findings. For PET, motion correction resulted in an average 8% increase in 18F-FDG signal in the inferior and inferolateral segments of the myocardial wall. An improved delineation of myocardial viability defects and reduced noise in the 18F-FDG PET images was observed, improving correspondence to subendocardial LGE-MRI findings compared to uncorrected images.ConclusionThe feasibility of the PET-CMRA framework for simultaneous cardiac PET-MR imaging in a short and predictable scan time (~11 min) has been demonstrated in 14 patients with CTO. Motion correction increased visible length and sharpness of the coronary arteries by CMRA, and improved delineation of the myocardium by 18F-FDG PET, resulting in good agreement with X-ray angiography and LGE-MRI.
Journal Article
3D whole-heart phase sensitive inversion recovery CMR for simultaneous black-blood late gadolinium enhancement and bright-blood coronary CMR angiography
2017
Phase sensitive inversion recovery (PSIR) applied to late gadolinium enhancement (LGE) imaging is widely used in clinical practice. However, conventional 2D PSIR LGE sequences provide sub-optimal contrast between scar tissue and blood pool, rendering the detection of subendocardial infarcts and scar segmentation challenging. Furthermore, the acquisition of a low flip angle reference image doubles the acquisition time without providing any additional diagnostic information. The purpose of this study was to develop and test a novel 3D whole-heart PSIR-like framework, named BOOST, enabling simultaneous black-blood LGE assessment and bright-blood visualization of cardiac anatomy.
The proposed approach alternates the acquisition of a 3D volume preceded by a T2-prepared Inversion Recovery (T2Prep-IR) module (magnitude image) with the acquisition of a T2-prepared 3D volume (reference image). The two volumes (T2Prep-IR BOOST and bright-blood T2Prep BOOST) are combined in a PSIR-like reconstruction to obtain a complementary 3D black-blood volume for LGE assessment (PSIR BOOST). The black-blood PSIR BOOST and the bright-blood T2Prep BOOST datasets were compared to conventional clinical sequences for scar detection and coronary CMR angiography (CMRA) in 18 patients with a spectrum of cardiovascular disease (CVD).
Datasets from 12 patients were quantitatively analysed. The black-blood PSIR BOOST dataset provided statistically improved contrast to noise ratio (CNR) between blood and scar when compared to a clinical 2D PSIR sequence (15.8 ± 3.3 and 4.1 ± 5.6, respectively). Overall agreement in LGE depiction was found between 3D black-blood PSIR BOOST and clinical 2D PSIR acquisitions, with 11/12 PSIR BOOST datasets considered diagnostic. The bright-blood T2Prep BOOST dataset provided high quality depiction of the proximal coronary segments, with improvement of visual score when compared to a clinical CMRA sequence. Acquisition time of BOOST (~10 min), providing information on both LGE uptake and heart anatomy, was comparable to that of a clinical single CMRA sequence.
The feasibility of BOOST for simultaneous black-blood LGE assessment and bright-blood coronary angiography was successfully tested in patients with cardiovascular disease. The framework enables free-breathing multi-contrast whole-heart acquisitions with 100% scan efficiency and predictable scan time. Complementary information on 3D LGE and heart anatomy are obtained reducing examination time.
Journal Article
Diagnostic performance of image navigated coronary CMR angiography in patients with coronary artery disease
2017
The use of coronary MR angiography (CMRA) in patients with coronary artery disease (CAD) remains limited due to the long scan times, unpredictable and often non-diagnostic image quality secondary to respiratory motion artifacts. The purpose of this study was to evaluate CMRA with image-based respiratory navigation (iNAV CMRA) and compare it to gold standard invasive x-ray coronary angiography in patients with CAD.
Consecutive patients referred for CMR assessment were included to undergo iNAV CMRA on a 1.5 T scanner. Coronary vessel sharpness and a visual score were assigned to the coronary arteries. A diagnostic reading was performed on the iNAV CMRA data, where a lumen narrowing >50% was considered diseased. This was compared to invasive x-ray findings.
Image-navigated CMRA was performed in 31 patients (77% male, 56 ± 14 years). The iNAV CMRA scan time was 7 min:21 s ± 0 min:28 s. Out of a possible 279 coronary segments, 26 segments were excluded from analysis due to stents or diameter less than 1.5 mm, resulting in a total of 253 coronary segments. Diagnostic image quality was obtained for 98% of proximal coronary segments, 94% of middle segments, and 91% of distal coronary segments. The sensitivity and specificity was 86% and 83% per patient, 80% and 92% per vessel and 73% and 95% per segment.
In this study, iNAV CMRA offered a very good diagnostic performance when compared against invasive x-ray angiography. Due to the short and predictable scan time it can add clinical value as a part of a comprehensive CAD assessment protocol.
Journal Article
Sparse 3D contrast-enhanced whole-heart imaging for coronary artery evaluation
by
Baumann, Stefan
,
Janssen, Sonja
,
Overhoff, Daniel
in
Angiography
,
Arteries
,
Computed tomography
2023
BackgroundWe investigated the feasibility of evaluating coronary arteries with a contrast-enhanced (CE) self-navigated sparse isotropic 3D whole heart T1-weighted magnetic resonance imaging (MRI) study sequence.MethodsA total of 22 consecutive patients underwent coronary angiography and/or cardiac computed tomography (CT) including cardiac MRI. The image quality was evaluated on a 3-point Likert scale. Inter-reader variability for image quality was analyzed with Cohen’s kappa for the main coronary segments (left circumflex [LCX], left anterior descending [LAD], right coronary artery [RCA]) and the left main trunk (LMT).ResultsInter-reader agreement for image quality of the coronary tree ranged from substantial to perfect, with a Cohen’s kappa of 0.722 (RCAmid) to 1 (LCXprox). The LMT had the best image quality. Image quality of the proximal vessel segments differed significantly from the mid- and distal segments (RCAprox vs. RCAdist, p < 0.05). The LCX segments showed no significant difference in image quality along the vessel length (LCXprox vs. LCXdist, p = n.s.). The mean acquisition time for the study sequence was 553 s (±46 s).ConclusionCoronary imaging with a sparse 3D whole-heart sequence is feasible in a reasonable amount of time producing good-quality imaging. Image quality was poorer in distal coronary segments and along the entire course of the LCX.
Journal Article
Postmortem magnetic resonance imaging of the heart ex situ: development of technical protocols
2015
Postmortem MRI (PMMR) examinations are seldom performed in legal medicine due to long examination times, unfamiliarity with the technique, and high costs. Furthermore, it is difficult to obtain access to an MRI device used for patients in clinical settings to image an entire human body. An alternative is available: ex situ organ examination. To our knowledge, there is no standardized protocol that includes ex situ organ preparation and scanning parameters for postmortem MRI. Thus, our objective was to develop a standard procedure for ex situ heart PMMR examinations. We also tested the oily contrast agent Angiofil® commonly used for PMCT angiography, for its applicability in MRI. We worked with a 3 Tesla MRI device and 32-channel head coils. Twelve porcine hearts were used to test different materials to find the best way to prepare and place organs in the device and to test scanning parameters. For coronary MR angiography, we tested different mixtures of Angiofil® and different injection materials. In a second step, 17 human hearts were examined to test the procedure and its applicability to human organs. We established two standardized protocols: one for preparation of the heart and another for scanning parameters based on experience in clinical practice. The established protocols enabled a standardized technical procedure with comparable radiological images, allowing for easy radiological reading. The performance of coronary MR angiography enabled detailed coronary assessment and revealed the utility of Angiofil® as a contrast agent for PMMR. Our simple, reproducible method for performing heart examinations ex situ yields high quality images and visualization of the coronary arteries.
Journal Article
Magnetic resonance of coronary arteries
by
Pennell, D. J.
,
Bunce, N. H.
in
Cardiovascular disease
,
Coronary Angiography - methods
,
Coronary Artery Bypass
2001
Magnetic resonance coronary angiography (MRCA) is developing rapidly as a non-invasive method for assessing coronary artery anatomy and function. This article reviews the issues involved in MRCA and the methods used to overcome them. The current clinical applications for MRCA are then summarised with reference to published clinical studies.
Journal Article
Magnetic resonance imaging of coronary artery occlusions in the navigator technique
2002
Non-invasive assessment of coronary arteries is possible with magnetic resonance imaging (MRI). Respiratory gated MR coronary angiography is a new imaging technique that permits reconstruction of the coronary arteries based on a three-dimensional (3D) data set obtained from the free-breathing patient. In this study, respiratory gated MR angiography (MRA) was performed to assess coronary artery occlusions. MRI was performed in 25 patients who had been referred for conventional coronary angiography because of suspected coronary artery disease. Coronary artery occlusion was evaluated in the proximal and middle vessel segments after multiplanar coronary reconstruction of the MR images. Five patients were excluded from the study; in the remaining 20 patients 120 coronary artery segments were analyzed. Good image quality could be obtained for 85% of the segments. Eighteen of the 24 occlusions were confirmed by MRI, the overall sensitivity was 75% and the specificity was 100%. The best results were found in the proximal left anterior descending (LAD) and descending parts of the right coronary artery (RCA), where all occlusions were confirmed. These results showed that coronary artery occlusions can be detected in the proximal and middle LAD and RCA using 3D respiratory gated MRA. Further technical improvements, especially in spatial resolution, are necessary before MRA can become a reliable diagnostic tool in the non-invasive evaluation of coronary arteries.
Journal Article
Volume coronary angiography using targeted scans (VCATS): A new strategy in MR coronary angiography
by
van Geuns, R.J.M.
,
de Bruin, H.G.
,
de Feyter, P.J.
in
Coronary Angiography - methods
,
Coronary Artery Disease - diagnostic imaging
,
Female
2001
The aim of this study was to explore the clinical possibilities of a new strategy for magnetic resonance imaging of the coronary arteries. Thirteen patients were studied by volume coronary angiography using targeted scans (VCATS) to visualize the major coronary arteries in a series of breath-holds. The proximal coronary arteries were clearly seen in 92% and the mid segments in 50-70% of the patients. VCATS was able to visualize a total vessel length of the left main (LM) (mean: 9.4+/-3.4 mm), of the left anterior descending (LAD) 69+/-20 mm, of the right coronary artery (RCA) 90+/-33 mm and of the left circumflex (LCX) 41+/-18 mm. There was a reasonable correlation between the VCATS and conventional coronary angiography (CAG) for vessel diameter (r = 0.71), with a slight overestimation of 0.7 mm by VCATS. There were nine significant stenoses present of which six were correctly detected, three were missed and one false positive was present. VCATS is fast strategy for visualizing the major coronary artery branches and has the potential to detect significant stenoses in these branches.
Journal Article
MR Angiography: Coronaries and Great Vessels
by
Yang, Phillip
,
Nguyen, Patricia
in
aortic rupture, trauma a lesion extending ‐ from intima to adventitia
,
clinical implementation of C‐MRA
,
intrinsic and extrinsic contrast agents ‐ differentiating blood and surrounding tissue
2010
This chapter contains sections titled:
Summary
Introduction
Challenges
Technical Advances in Coronary MRA
Clinical Implementation of C‐MRA
Technical Strategies Specific to GV‐MRA
Clinical Implementation of GV‐MRA
Future Direction
Conclusion
References
Book Chapter