Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
13,622
result(s) for
"Coronavirus Infections - immunology"
Sort by:
Seasonal coronavirus protective immunity is short-lasting
by
Sastre, Patricia
,
Jebbink, Maarten F.
,
Deijs, Martin
in
631/250/254
,
631/326/596
,
Adaptive Immunity
2020
A key unsolved question in the current coronavirus disease 2019 (COVID-19) pandemic is the duration of acquired immunity. Insights from infections with the four seasonal human coronaviruses might reveal common characteristics applicable to all human coronaviruses. We monitored healthy individuals for more than 35 years and determined that reinfection with the same seasonal coronavirus occurred frequently at 12 months after infection.
The durability of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unknown. Lessons from seasonal coronavirus infections in humans show that reinfections can occur within 12 months of initial infection, coupled with changes in levels of virus-specific antibodies.
Journal Article
Myocarditis and inflammatory cardiomyopathy: current evidence and future directions
2021
Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.In this Review, Tschöpe and colleagues summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with special focus on virus-induced and virus-associated myocarditis. The authors also identify knowledge gaps, appraise available experimental models and propose future directions for the field.
Journal Article
Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
2020
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged coronavirus that is responsible for the current pandemic of coronavirus disease 2019 (COVID-19), which has resulted in more than 3.7 million infections and 260,000 deaths as of 6 May 2020
1
,
2
. Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe several monoclonal antibodies that target the S glycoprotein of SARS-CoV-2, which we identified from memory B cells of an individual who was infected with severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003. One antibody (named S309) potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2, by engaging the receptor-binding domain of the S glycoprotein. Using cryo-electron microscopy and binding assays, we show that S309 recognizes an epitope containing a glycan that is conserved within the
Sarbecovirus
subgenus, without competing with receptor attachment. Antibody cocktails that include S309 in combination with other antibodies that we identified further enhanced SARS-CoV-2 neutralization, and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309 and antibody cocktails containing S309 for prophylaxis in individuals at a high risk of exposure or as a post-exposure therapy to limit or treat severe disease.
The monoclonal antibody S309, identified from memory B cells of an individual infected with SARS-CoV in 2003, or antibody cocktails that contain this antibody potently neutralize SARS-CoV-2.
Journal Article
Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults
by
Dormitzer, Philip R.
,
Lockhart, Stephen
,
Koury, Kenneth
in
631/326/596/4130
,
692/308/153
,
692/308/2779/777
2020
In March 2020, the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
1
, a pandemic. With rapidly accumulating numbers of cases and deaths reported globally
2
, a vaccine is urgently needed. Here we report the available safety, tolerability and immunogenicity data from an ongoing placebo-controlled, observer-blinded dose-escalation study (ClinicalTrials.gov identifier NCT04368728) among 45 healthy adults (18–55 years of age), who were randomized to receive 2 doses—separated by 21 days—of 10 μg, 30 μg or 100 μg of BNT162b1. BNT162b1 is a lipid-nanoparticle-formulated, nucleoside-modified mRNA vaccine that encodes the trimerized receptor-binding domain (RBD) of the spike glycoprotein of SARS-CoV-2. Local reactions and systemic events were dose-dependent, generally mild to moderate, and transient. A second vaccination with 100 μg was not administered because of the increased reactogenicity and a lack of meaningfully increased immunogenicity after a single dose compared with the 30-μg dose. RBD-binding IgG concentrations and SARS-CoV-2 neutralizing titres in sera increased with dose level and after a second dose. Geometric mean neutralizing titres reached 1.9–4.6-fold that of a panel of COVID-19 convalescent human sera, which were obtained at least 14 days after a positive SARS-CoV-2 PCR. These results support further evaluation of this mRNA vaccine candidate.
In a dose-escalation study of the COVID-19 RNA vaccine BNT162b1 in 45 healthy adults, RBD-binding IgG concentrations and SARS-CoV-2 neutralizing titres in sera increased with dose level and after a second vaccine dose.
Journal Article
Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19
by
Rostron, Timothy
,
Semple, Malcolm G.
,
Supasa, Piyada
in
631/250/2152/1566/1571
,
692/699/255/2514
,
Antigens, Viral - immunology
2020
The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4
+
and/or CD8
+
epitopes, including six immunodominant regions. Six optimized CD8
+
epitopes were defined, with peptide–MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8
+
T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.
Questions have arisen as to whether patients with severe COVID-19 disease can generate a T cell response against SARS-CoV-2. Tao Dong and colleagues report that convalescent patients with COVID-19 harbor functional memory CD4
+
and CD8
+
T cells that recognize multiple epitopes that span the viral proteome. CD4
+
T cells predominated the memory response in patients with severe disease, whereas higher proportions of CD8
+
T cells were found in patients with mild disease.
Journal Article
Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine
by
Zhou, Yusen
,
Voronin, Denis
,
Jiang Shibo
in
ACE2
,
Angiotensin
,
Angiotensin-converting enzyme 2
2020
The outbreak of Coronavirus Disease 2019 (COVID-19) has posed a serious threat to global public health, calling for the development of safe and effective prophylactics and therapeutics against infection of its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as 2019 novel coronavirus (2019-nCoV). The CoV spike (S) protein plays the most important roles in viral attachment, fusion and entry, and serves as a target for development of antibodies, entry inhibitors and vaccines. Here, we identified the receptor-binding domain (RBD) in SARS-CoV-2 S protein and found that the RBD protein bound strongly to human and bat angiotensin-converting enzyme 2 (ACE2) receptors. SARS-CoV-2 RBD exhibited significantly higher binding affinity to ACE2 receptor than SARS-CoV RBD and could block the binding and, hence, attachment of SARS-CoV-2 RBD and SARS-CoV RBD to ACE2-expressing cells, thus inhibiting their infection to host cells. SARS-CoV RBD-specific antibodies could cross-react with SARS-CoV-2 RBD protein, and SARS-CoV RBD-induced antisera could cross-neutralize SARS-CoV-2, suggesting the potential to develop SARS-CoV RBD-based vaccines for prevention of SARS-CoV-2 and SARS-CoV infection.
Journal Article
Potently neutralizing and protective human antibodies against SARS-CoV-2
by
Nargi, Rachel S.
,
Chandrashekar, Abishek
,
Chen, Elaine C.
in
101/28
,
13/109
,
631/250/255/2514
2020
The ongoing pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health
1
and the medical countermeasures available so far are limited
2
,
3
. Moreover, we currently lack a thorough understanding of the mechanisms of humoral immunity to SARS-CoV-2
4
. Here we analyse a large panel of human monoclonal antibodies that target the spike (S) glycoprotein
5
, and identify several that exhibit potent neutralizing activity and fully block the receptor-binding domain of the S protein (S
RBD
) from interacting with human angiotensin-converting enzyme 2 (ACE2). Using competition-binding, structural and functional studies, we show that the monoclonal antibodies can be clustered into classes that recognize distinct epitopes on the S
RBD
, as well as distinct conformational states of the S trimer. Two potently neutralizing monoclonal antibodies, COV2-2196 and COV2-2130, which recognize non-overlapping sites, bound simultaneously to the S protein and neutralized wild-type SARS-CoV-2 virus in a synergistic manner. In two mouse models of SARS-CoV-2 infection, passive transfer of COV2-2196, COV2-2130 or a combination of both of these antibodies protected mice from weight loss and reduced the viral burden and levels of inflammation in the lungs. In addition, passive transfer of either of two of the most potent ACE2-blocking monoclonal antibodies (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on the S
RBD
and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic agents.
An analysis identifies human monoclonal antibodies that potently neutralize wild-type SARS-CoV-2 and protect animals from disease, including two that synergize in a cocktail, suggesting that these could be candidates for use as therapeutic agents for the treatment of COVID-19 in humans.
Journal Article
Clinical and immunological features of severe and moderate coronavirus disease 2019
2020
BACKGROUNDSince December 2019, an outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, and is now becoming a global threat. We aimed to delineate and compare the immunological features of severe and moderate COVID-19.METHODSIn this retrospective study, the clinical and immunological characteristics of 21 patients (17 male and 4 female) with COVID-19 were analyzed. These patients were classified as severe (11 cases) and moderate (10 cases) according to the guidelines released by the National Health Commission of China.RESULTSThe median age of severe and moderate cases was 61.0 and 52.0 years, respectively. Common clinical manifestations included fever, cough, and fatigue. Compared with moderate cases, severe cases more frequently had dyspnea, lymphopenia, and hypoalbuminemia, with higher levels of alanine aminotransferase, lactate dehydrogenase, C-reactive protein, ferritin, and D-dimer as well as markedly higher levels of IL-2R, IL-6, IL-10, and TNF-α. Absolute numbers of T lymphocytes, CD4+ T cells, and CD8+ T cells decreased in nearly all the patients, and were markedly lower in severe cases (294.0, 177.5, and 89.0 × 106/L, respectively) than moderate cases (640.5, 381.5, and 254.0 × 106/L, respectively). The expression of IFN-γ by CD4+ T cells tended to be lower in severe cases (14.1%) than in moderate cases (22.8%).CONCLUSIONThe SARS-CoV-2 infection may affect primarily T lymphocytes, particularly CD4+ and CD8+ T cells, resulting in a decrease in numbers as well as IFN-γ production by CD4+ T cells. These potential immunological markers may be of importance because of their correlation with disease severity in COVID-19.TRIAL REGISTRATIONThis is a retrospective observational study without a trial registration number.FUNDINGThis work is funded by grants from Tongji Hospital for the Pilot Scheme Project, and partly supported by the Chinese National Thirteenth Five Years Project in Science and Technology for Infectious Disease (2017ZX10202201).
Journal Article
A human monoclonal antibody blocking SARS-CoV-2 infection
2020
The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell culture. This cross-neutralizing antibody targets a communal epitope on these viruses and may offer potential for prevention and treatment of COVID-19.
Vaccines and targeted therapeutics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are currently lacking. Here, the authors report a human monoclonal antibody capable of neutralizing both authentic SARS-CoV and SARS-CoV-2 by targeting a common epitope.
Journal Article
ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques
2020
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019
1
,
2
and is responsible for the coronavirus disease 2019 (COVID-19) pandemic
3
. Vaccines are an essential countermeasure and are urgently needed to control the pandemic
4
. Here we show that the adenovirus-vector-based vaccine ChAdOx1 nCoV-19, which encodes the spike protein of SARS-CoV-2, is immunogenic in mice and elicites a robust humoral and cell-mediated response. This response was predominantly mediated by type-1 T helper cells, as demonstrated by the profiling of the IgG subclass and the expression of cytokines. Vaccination with ChAdOx1 nCoV-19 (using either a prime-only or a prime–boost regimen) induced a balanced humoral and cellular immune response of type-1 and type-2 T helper cells in rhesus macaques. We observed a significantly reduced viral load in the bronchoalveolar lavage fluid and lower respiratory tract tissue of vaccinated rhesus macaques that were challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated SARS-CoV-2-infected animals. However, there was no difference in nasal shedding between vaccinated and control SARS-CoV-2-infected macaques. Notably, we found no evidence of immune-enhanced disease after viral challenge in vaccinated SARS-CoV-2-infected animals. The safety, immunogenicity and efficacy profiles of ChAdOx1 nCoV-19 against symptomatic PCR-positive COVID-19 disease will now be assessed in randomized controlled clinical trials in humans.
The ChAdOx1 nCoV-19 vaccine against SARS-CoV-2 induces an immune response in rhesus macaques and leads to reduced SARS-CoV-2 viral loads in respiratory tissues and an absence of pneumonia, but not to a reduction in nasal virus shedding, compared with unvaccinated animals.
Journal Article