Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,733
result(s) for
"Cortex (cingulate)"
Sort by:
Automated anatomical labelling atlas 3
2020
Following a first version AAL of the automated anatomical labeling atlas (Tzourio-Mazoyer et al., 2002), a second version (AAL2) (Rolls et al., 2015) was developed that provided an alternative parcellation of the orbitofrontal cortex following the description provided by Chiavaras, Petrides, and colleagues. We now provide a third version, AAL3, which adds a number of brain areas not previously defined, but of interest in many neuroimaging investigations. The 26 new areas in the third version are subdivision of the anterior cingulate cortex into subgenual, pregenual and supracallosal parts; subdivision of the thalamus into 15 parts; the nucleus accumbens, substantia nigra, ventral tegmental area, red nucleus, locus coeruleus, and raphe nuclei. The new atlas is available as a toolbox for SPM, and can be used with MRIcron.
•The automated anatomical atlas 3 (AAL3) is described. The following new areas are added.•Subdivision of the anterior cingulate cortex into subgenual, pregenual and supracallosal parts.•Thalamus, nucleus accumbens, substantia nigra, ventral tegmental area, red nucleus.•Locus coeruleus, and raphe nuclei.•AAL3 is available as a toolbox for SPM at www.oxcns.org.
Journal Article
The cingulate cortex and limbic systems for emotion, action, and memory
2019
Evidence is provided for a new conceptualization of the connectivity and functions of the cingulate cortex in emotion, action, and memory. The anterior cingulate cortex receives information from the orbitofrontal cortex about reward and non-reward outcomes. The posterior cingulate cortex receives spatial and action-related information from parietal cortical areas. It is argued that these inputs allow the cingulate cortex to perform action–outcome learning, with outputs from the midcingulate motor area to premotor areas. In addition, because the anterior cingulate cortex connects rewards to actions, it is involved in emotion; and because the posterior cingulate cortex has outputs to the hippocampal system, it is involved in memory. These apparently multiple different functions of the cingulate cortex are related to the place of this proisocortical limbic region in brain connectivity.
Journal Article
Hot and cold executive functions in the brain: A prefrontal-cingular network
by
Ghanavati, Elham
,
Salehinejad, Mohammad Ali
,
Rashid, Md Harun Ar
in
Anxiety disorders
,
Attention deficit hyperactivity disorder
,
Autism
2021
Executive functions, or cognitive control, are higher-order cognitive functions needed for adaptive goal-directed behaviours and are significantly impaired in majority of neuropsychiatric disorders. Different models and approaches are proposed for describing how executive functions are functionally organised in the brain. One popular and recently proposed organising principle of executive functions is the distinction between hot (i.e. reward or affective-related) versus cold (i.e. purely cognitive) domains of executive functions. The prefrontal cortex is traditionally linked to executive functions, but on the other hand, anterior and posterior cingulate cortices are hugely involved in executive functions as well. In this review, we first define executive functions, their domains, and the appropriate methods for studying them. Second, we discuss how hot and cold executive functions are linked to different areas of the prefrontal cortex. Next, we discuss the association of hot versus cold executive functions with the cingulate cortex, focusing on the anterior and posterior compartments. Finally, we propose a functional model for hot and cold executive function organisation in the brain with a specific focus on the fronto-cingular network. We also discuss clinical implications of hot versus cold cognition in major neuropsychiatric disorders (depression, schizophrenia, anxiety disorders, substance use disorder, attention-deficit hyperactivity disorder, and autism) and attempt to characterise their profile according to the functional dominance or manifest of hot–cold cognition. Our model proposes that the lateral prefrontal cortex along with the dorsal anterior cingulate cortex are more relevant for cold executive functions, while the medial–orbital prefrontal cortex along with the ventral anterior cingulate cortex, and the posterior cingulate cortex are more closely involved in hot executive functions. This functional distinction, however, is not absolute and depends on several factors including task features, context, and the extent to which the measured function relies on cognition and emotion or both.
Journal Article
Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala
2023
The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.
Journal Article
Theta activity from frontopolar cortex, mid-cingulate cortex and anterior cingulate cortex shows different roles in cognitive planning performance
by
Perrone-Bertolotti, Marcela
,
Ossandón, Tomás
,
Valdés, Joaquín
in
Adult
,
Anterior cingulate cortex
,
Attention
2021
Cognitive planning, the ability to develop a sequenced plan to achieve a goal, plays a crucial role in human goal-directed behavior. However, the specific role of frontal structures in planning is unclear. We used a novel and ecological task, that allowed us to separate the planning period from the execution period. The spatio-temporal dynamics of EEG recordings showed that planning induced a progressive and sustained increase of frontal-midline theta activity (FMθ) over time. Source analyses indicated that this activity was generated within the prefrontal cortex. Theta activity from the right mid-Cingulate Cortex (MCC) and the left Anterior Cingulate Cortex (ACC) were correlated with an increase in the time needed for elaborating plans. On the other hand, left Frontopolar cortex (FP) theta activity exhibited a negative correlation with the time required for executing a plan. Since reaction times of planning execution correlated with correct responses, left FP theta activity might be associated with efficiency and accuracy in making a plan. Associations between theta activity from the right MCC and the left ACC with reaction times of the planning period may reflect high cognitive demand of the task, due to the engagement of attentional control and conflict monitoring implementation. In turn, the specific association between left FP theta activity and planning performance may reflect the participation of this brain region in successfully self-generated plans.
Journal Article
The human posterior cingulate, retrosplenial, and medial parietal cortex effective connectome, and implications for memory and navigation
by
Deco, Gustavo
,
Huang, Chu‐Chung
,
Wirth, Sylvia
in
Animal memory
,
Cerebral Cortex
,
Cognitive ability
2023
The human posterior cingulate, retrosplenial, and medial parietal cortex are involved in memory and navigation. The functional anatomy underlying these cognitive functions was investigated by measuring the effective connectivity of these Posterior Cingulate Division (PCD) regions in the Human Connectome Project‐MMP1 atlas in 171 HCP participants, and complemented with functional connectivity and diffusion tractography. First, the postero‐ventral parts of the PCD (31pd, 31pv, 7m, d23ab, and v23ab) have effective connectivity with the temporal pole, inferior temporal visual cortex, cortex in the superior temporal sulcus implicated in auditory and semantic processing, with the reward‐related vmPFC and pregenual anterior cingulate cortex, with the inferior parietal cortex, and with the hippocampal system. This connectivity implicates it in hippocampal episodic memory, providing routes for “what,” reward and semantic schema‐related information to access the hippocampus. Second, the antero‐dorsal parts of the PCD (especially 31a and 23d, PCV, and also RSC) have connectivity with early visual cortical areas including those that represent spatial scenes, with the superior parietal cortex, with the pregenual anterior cingulate cortex, and with the hippocampal system. This connectivity implicates it in the “where” component for hippocampal episodic memory and for spatial navigation. The dorsal–transitional–visual (DVT) and ProStriate regions where the retrosplenial scene area is located have connectivity from early visual cortical areas to the parahippocampal scene area, providing a ventromedial route for spatial scene information to reach the hippocampus. These connectivities provide important routes for “what,” reward, and “where” scene‐related information for human hippocampal episodic memory and navigation. The midcingulate cortex provides a route from the anterior dorsal parts of the PCD and the supracallosal part of the anterior cingulate cortex to premotor regions.
First, the postero‐ventral parts of the Posterior Cingulate Division of the Human Connectome Project Multimodal Parcellation atlas (PCD; 31pd, 31pv, 7m, d23ab, and v23ab) have effective connectivity with the temporal pole, inferior temporal visual cortex, cortex in the superior temporal sulcus implicated in auditory and semantic processing, with the reward‐related vmPFC and pregenual anterior cingulate cortex, with the inferior parietal cortex, and with the hippocampal system; and this connectivity implicates these regions in hippocampal episodic memory, providing routes for “what,” reward, and semantic schema‐related information to access the hippocampus. Second, the antero‐dorsal parts of the PCD (especially 31a and 23d, PCV, and also RSC) have connectivity with early visual cortical areas including those that represent spatial scenes, with the superior parietal cortex, with the pregenual anterior cingulate cortex, and with the hippocampal system. This connectivity implicates them in the “where” component for hippocampal episodic memory and for spatial navigation. Third, the dorsal–transitional–visual (DVT) and ProStriate regions are where the retrosplenial scene area is located, have connectivity from early cortical visual areas, connect to the parahippocampal scene area, and provide a ventromedial cortex route for scene information to reach the hippocampal system.
Journal Article
Switching tinnitus on or off: An initial investigation into the role of the pregenual and rostral to dorsal anterior cingulate cortices
by
Verplancke, Thierry
,
De Ridder, Dirk
,
Byczynski, Gabriel
in
Chronic pain
,
Cortex (auditory)
,
Cortex (cingulate)
2024
•Increased theta activity in the pregenual anterior cingulate cortex triggers tinnitus.•Decreased theta functional connectivity between pregenual anterior cingulate cortex and auditory cortex accompanies tinnitus onset.•Alpha differences in the pregenual anterior cingulate cortex and increased alpha functional connectivity differentiate the no-tinnitus state from healthy subjects.•Insights into mechanisms of tinnitus generation and potential treatment strategies akin to chronic neuropathic pain.
Research indicates that hearing loss significantly contributes to tinnitus, but it alone does not fully explain its occurrence, as many people with hearing loss do not experience tinnitus. To identify a secondary factor for tinnitus generation, we examined a unique dataset of individuals with intermittent chronic tinnitus, who experience fluctuating periods of tinnitus. EEGs of healthy controls were compared to EEGs of participants who reported perceiving tinnitus on certain days, but no tinnitus on other days.. The EEG data revealed that tinnitus onset is associated with increased theta activity in the pregenual anterior cingulate cortex and decreased theta functional connectivity between the pregenual anterior cingulate cortex and the auditory cortex. Additionally, there is increased alpha effective connectivity from the dorsal anterior cingulate cortex to the pregenual anterior cingulate cortex. When tinnitus is not perceived, differences from healthy controls include increased alpha activity in the pregenual anterior cingulate cortex and heightened alpha connectivity between the pregenual anterior cingulate cortex and auditory cortex. This suggests that tinnitus is triggered by a switch involving increased theta activity in the pregenual anterior cingulate cortex and decreased theta connectivity between the pregenual anterior cingulate cortex and auditory cortex, leading to increased theta-gamma cross-frequency coupling, which correlates with tinnitus loudness. Increased alpha activity in the dorsal anterior cingulate cortex correlates with distress. Conversely, increased alpha activity in the pregenual anterior cingulate cortex can transiently suppress the phantom sound by enhancing theta connectivity to the auditory cortex. This mechanism parallels chronic neuropathic pain and suggests potential treatments for tinnitus by promoting alpha activity in the pregenual anterior cingulate cortex and reducing alpha activity in the dorsal anterior cingulate cortex through pharmacological or neuromodulatory approaches.
Journal Article
Long COVID: cognitive complaints (brain fog) and dysfunction of the cingulate cortex
by
Karim, Farid
,
Hugon, Jacques
,
Queneau Mathieu
in
Activities of daily living
,
Alzheimer's disease
,
Anxiety
2022
Many patients who have suffered from acute COVID infections have long-lasting symptoms affecting several organs including the brain. This long COVID status can include “brain fog” and cognitive deficits that can disturb activities of daily living and can delay complete recovery. Here, we report two cases of neurological long COVID with abnormal FDG PET findings marked by hypometabolic regions of the cingulate cortex.
Journal Article
The macaque anterior cingulate cortex translates counterfactual choice value into actual behavioral change
by
Verhagen Lennart
,
Tankelevitch Lev
,
Fouragnan, Elsa F
in
Animal behavior
,
Behavior
,
Cortex (cingulate)
2019
The neural mechanisms mediating sensory-guided decision-making have received considerable attention, but animals often pursue behaviors for which there is currently no sensory evidence. Such behaviors are guided by internal representations of choice values that have to be maintained even when these choices are unavailable. We investigated how four macaque monkeys maintained representations of the value of counterfactual choices—choices that could not be taken at the current moment but which could be taken in the future. Using functional magnetic resonance imaging, we found two different patterns of activity co-varying with values of counterfactual choices in a circuit spanning the hippocampus, the anterior lateral prefrontal cortex and the anterior cingulate cortex. Anterior cingulate cortex activity also reflected whether the internal value representations would be translated into actual behavioral change. To establish the causal importance of the anterior cingulate cortex for this translation process, we used a novel technique, transcranial focused ultrasound stimulation, to reversibly disrupt anterior cingulate cortex activity.Fouragnan et al. used neuroimaging and ultrasound neuromodution in non-human primates to demonstrate the causal role of the anterior cingulate cortex in translating counterfactual values in future choices.
Journal Article
A pathway from midcingulate cortex to posterior insula gates nociceptive hypersensitivity
2017
The authors identify the midcingulate cortex as a region that gates nociceptive plasticity without modulating basal nociception or the affective component of acute pain in mice. They identify a novel pathway from the midcingulate cortex to the posterior insula that recruits descending serotonergic projections to facilitate nociception.
The identity of cortical circuits mediating nociception and pain is largely unclear. The cingulate cortex is consistently activated during pain, but the functional specificity of cingulate divisions, the roles at distinct temporal phases of central plasticity and the underlying circuitry are unknown. Here we show in mice that the midcingulate division of the cingulate cortex (MCC) does not mediate acute pain sensation and pain affect, but gates sensory hypersensitivity by acting in a wide cortical and subcortical network. Within this complex network, we identified an afferent MCC–posterior insula pathway that can induce and maintain nociceptive hypersensitivity in the absence of conditioned peripheral noxious drive. This facilitation of nociception is brought about by recruitment of descending serotonergic facilitatory projections to the spinal cord. These results have implications for our understanding of neuronal mechanisms facilitating the transition from acute to long-lasting pain.
Journal Article