Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
10,978 result(s) for "Cortex (temporal)"
Sort by:
Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study
There is growing evidence that Alzheimer disease (AD) is a pervasive metabolic disorder with dysregulation in multiple biochemical pathways underlying its pathogenesis. Understanding how perturbations in metabolism are related to AD is critical to identifying novel targets for disease-modifying therapies. In this study, we test whether AD pathogenesis is associated with dysregulation in brain transmethylation and polyamine pathways. We first performed targeted and quantitative metabolomics assays using capillary electrophoresis-mass spectrometry (CE-MS) on brain samples from three groups in the Baltimore Longitudinal Study of Aging (BLSA) (AD: n = 17; Asymptomatic AD [ASY]: n = 13; Control [CN]: n = 13) (overall 37.2% female; mean age at death 86.118 ± 9.842 years) in regions both vulnerable and resistant to AD pathology. Using linear mixed-effects models within two primary brain regions (inferior temporal gyrus [ITG] and middle frontal gyrus [MFG]), we tested associations between brain tissue concentrations of 26 metabolites and the following primary outcomes: group differences, Consortium to Establish a Registry for Alzheimer's Disease (CERAD) (neuritic plaque burden), and Braak (neurofibrillary pathology) scores. We found significant alterations in concentrations of metabolites in AD relative to CN samples, as well as associations with severity of both CERAD and Braak, mainly in the ITG. These metabolites represented biochemical reactions in the (1) methionine cycle (choline: lower in AD, p = 0.003; S-adenosyl methionine: higher in AD, p = 0.005); (2) transsulfuration and glutathione synthesis (cysteine: higher in AD, p < 0.001; reduced glutathione [GSH]: higher in AD, p < 0.001); (3) polyamine synthesis/catabolism (spermidine: higher in AD, p = 0.004); (4) urea cycle (N-acetyl glutamate: lower in AD, p < 0.001); (5) glutamate-aspartate metabolism (N-acetyl aspartate: lower in AD, p = 0.002); and (6) neurotransmitter metabolism (gamma-amino-butyric acid: lower in AD, p < 0.001). Utilizing three Gene Expression Omnibus (GEO) datasets, we then examined mRNA expression levels of 71 genes encoding enzymes regulating key reactions within these pathways in the entorhinal cortex (ERC; AD: n = 25; CN: n = 52) and hippocampus (AD: n = 29; CN: n = 56). Complementing our metabolomics results, our transcriptomics analyses also revealed significant alterations in gene expression levels of key enzymatic regulators of biochemical reactions linked to transmethylation and polyamine metabolism. Our study has limitations: our metabolomics assays measured only a small proportion of all metabolites participating in the pathways we examined. Our study is also cross-sectional, limiting our ability to directly test how AD progression may impact changes in metabolite concentrations or differential-gene expression. Additionally, the relatively small number of brain tissue samples may have limited our power to detect alterations in all pathway-specific metabolites and their genetic regulators. In this study, we observed broad dysregulation of transmethylation and polyamine synthesis/catabolism, including abnormalities in neurotransmitter signaling, urea cycle, aspartate-glutamate metabolism, and glutathione synthesis. Our results implicate alterations in cellular methylation potential and increased flux in the transmethylation pathways, increased demand on antioxidant defense mechanisms, perturbations in intermediate metabolism in the urea cycle and aspartate-glutamate pathways disrupting mitochondrial bioenergetics, increased polyamine biosynthesis and breakdown, as well as abnormalities in neurotransmitter metabolism that are related to AD.
When action prediction grows old: An fMRI study
Predicting the unfolding of others' actions (action prediction) is crucial for successfully navigating the social world and interacting efficiently. Age‐related changes in this domain have remained largely unexplored, especially for predictions regarding simple gestures and independent of contextual information or motor expertise. Here, we evaluated whether healthy aging impacts the neurophysiological processes recruited to anticipate, from the observation of implied‐motion postures, the correct conclusion of simple grasping and pointing actions. A color‐discrimination task served as a control condition to assess the specificity of the age‐related effects. Older adults showed reduced efficiency in performance that was yet not specific to the action prediction task. Nevertheless, fMRI results revealed task‐specific age‐related differences: while both groups showed stronger recruitment of the lateral occipito‐temporal cortex bilaterally during the action prediction than the control task, the younger participants additionally showed a higher bilateral engagement of parietal regions. Importantly, in both groups, the recruitment of visuo‐motor processes in the right posterior parietal cortex was a predictor of good performance. These results support the hypothesis of decreased involvement of sensorimotor processes in cognitive tasks when processing action‐ and body‐related stimuli in healthy aging. These results have implications for social interaction, which requires the fast reading of others' gestures. Predicting the unfolding of others' actions (action prediction) is crucial for successfully navigating the social world but age‐related changes in this domain have remained largely unexplored. Here, we demonstrate that healthy older individuals show reduced recruitment of sensorimotor but not visual brain regions when required to anticipate the correct conclusion of simple grasping and pointing actions. These results support the hypothesis of decreased involvement of sensorimotor processes in cognitive tasks when processing action‐ and body‐related stimuli in healthy aging, and they have implications for social interaction, which requires the fast reading of others' gestures.
The contribution of dynamics to macaque body and face patch responses
•We mapped patches in visual temporal cortex that are activated by dynamic bodies.•The body patch network is more extensive for dynamic than static bodies.•Response to dynamic bodies in upper and lower bank of the superior temporal sulcus.•Stronger effect of dynamics in body patches than in neighboring face patches. Previous functional imaging studies demonstrated body-selective patches in the primate visual temporal cortex, comparing activations to static bodies and static images of other categories. However, the use of static instead of dynamic displays of moving bodies may have underestimated the extent of the body patch network. Indeed, body dynamics provide information about action and emotion and may be processed in patches not activated by static images. Thus, to map with fMRI the full extent of the macaque body patch system in the visual temporal cortex, we employed dynamic displays of natural-acting monkey bodies, dynamic monkey faces, objects, and scrambled versions of these videos, all presented during fixation. We found nine body patches in the visual temporal cortex, starting posteriorly in the superior temporal sulcus (STS) and ending anteriorly in the temporal pole. Unlike for static images, body patches were present consistently in both the lower and upper banks of the STS. Overall, body patches showed a higher activation by dynamic displays than by matched static images, which, for identical stimulus displays, was less the case for the neighboring face patches. These data provide the groundwork for future single-unit recording studies to reveal the spatiotemporal features the neurons of these body patches encode. These fMRI findings suggest that dynamics have a stronger contribution to population responses in body than face patches.
On object selectivity and the anatomy of the human fusiform gyrus
pFs is a functionally-defined region in the human brain that is involved in recognizing objects. A recent trend refers to pFs as the posterior fusiform sulcus, which is a neuroanatomical structure that does not exist. Here, we correct this mistake. To achieve this goal, we first recount the original definitions of pFs and then review the identification of sulci within and surrounding the fusiform gyrus (FG) including the mid-fusiform sulcus (MFS), which is a tertiary sulcus within the FG. We highlight that tertiary sulci, such as the MFS, are often absent from brain atlases, which complicates the accurate localization of functional regions, as well as the understanding of structural-functional relationships in ventral temporal cortex (VTC). When considering the location of object-selective pFs from previously published data relative to the sulci surrounding the FG, as well as the MFS, we illustrate that (1) pFs spans several macroanatomical structures, which is consistent with the original definitions of pFs (Grill-Spector et al., 1999, 2000), and (2) the topological relationship between pFs and MFS has both stable and variable features. To prevent future confusion regarding the anatomical location of functional regions within VTC, as well as to complement tools that automatically identify sulci surrounding the FG, we provide a method to automatically identify the MFS in individual brains using FreeSurfer. Finally, we highlight the benefits of using cortical surface reconstructions in large datasets to identify and quantify tertiary sulci compared to classic dissection methods because the latter often fail to differentiate tertiary sulci from shallow surface indentations produced by veins and arteries. Altogether, we propose that the inclusion of definitions and labels for tertiary sulci in neuroanatomical atlases and neuroimaging software packages will enhance understanding of functional-structural relationships throughout the human brain.
Abnormal Connectivity and Brain Structure in Patients With Visual Snow
Visual snow (VS) is a distressing, life-impacting condition with persistent visual phenomena. VS patients show cerebral hypermetabolism within the visual cortex, resulting in altered neuronal excitability. We hypothesized to see disease-dependent alterations in functional connectivity and gray matter volume (GMV) in regions associated with visual perception. Nineteen patients with VS and 16 sex- and age-matched controls were recruited. Functional magnetic resonance imaging (fMRI) was applied to examine resting-state functional connectivity (rsFC). Volume changes were assessed by means of voxel-based morphometry (VBM). Finally, we assessed associations between MRI indices and clinical parameters. Patients with VS showed hyperconnectivity between extrastriate visual and inferior temporal brain regions and also between prefrontal and parietal (angular cortex) brain regions ( < 0.05, corrected for age and migraine occurrence). In addition, patients showed increased GMV in the right lingual gyrus ( < 0.05 corrected). Symptom duration positively correlated with GMV in both lingual gyri ( < 0.01 corrected). This study found VS to be associated with both functional and structural changes in the early and higher visual cortex, as well as the temporal cortex. These brain regions are involved in visual processing, memory, spatial attention, and cognitive control. We conclude that VS is not just confined to the visual system and that both functional and structural changes arise in VS patients, be it as an epiphenomenon or a direct contributor to the pathomechanism of VS. These neuroimaging biomarkers may hold potential as objective outcome measures of this so far purely subjective condition.
Keep the head in the right place: Face-body interactions in inferior temporal cortex
In primates, faces and bodies activate distinct regions in the inferior temporal (IT) cortex and are typically studied separately. Yet, primates interact with whole agents and not with random concatenations of faces and bodies. Despite its social importance, it is still poorly understood how faces and bodies interact in IT. Here, we addressed this gap by measuring fMRI activations to whole agents and to unnatural face-body configurations in which the head was mislocated with respect to the body, and examined how these relate to the sum of the activations to their corresponding faces and bodies. First, we mapped patches in the IT of awake macaques that were activated more by images of whole monkeys compared to objects and found that these mostly overlapped with body and face patches. In a second fMRI experiment, we obtained no evidence for superadditive responses in these “monkey patches”, with the activation to the monkeys being less or equal to the summed face-body activations. However, monkey patches in the anterior IT were activated more by natural compared to unnatural configurations. The stronger activations to natural configurations could not be explained by the summed face-body activations. These univariate results were supported by regression analyses in which we modeled the activations to both configurations as a weighted linear combination of the activations to the faces and bodies, showing higher regression coefficients for the natural compared to the unnatural configurations. Deeper layers of trained convolutional neural networks also contained units that responded more to natural compared to unnatural monkey configurations. Unlike the monkey fMRI patches, these units showed substantial superadditive responses to the natural configurations. Our monkey fMRI data suggest configuration-sensitive face-body interactions in anterior IT, adding to the evidence for an integrated face-body processing in the primate ventral visual stream, and open the way for mechanistic studies using single unit recordings in these patches.
Low and high frequency intracranial neural signals match in the human associative cortex
In vivo intracranial recordings of neural activity offer a unique opportunity to understand human brain function. Intracranial electrophysiological (iEEG) activity related to sensory, cognitive or motor events manifests mostly in two types of signals: event-related local field potentials in lower frequency bands (<30 Hz, LF) and broadband activity in the higher end of the frequency spectrum (>30 Hz, High frequency, HF). While most current studies rely exclusively on HF, thought to be more focal and closely related to spiking activity, the relationship between HF and LF signals is unclear, especially in human associative cortex. Here, we provide a large-scale in-depth investigation of the spatial and functional relationship between these 2 signals based on intracranial recordings from 121 individual brains (8000 recording sites). We measure category-selective responses to complex ecologically salient visual stimuli – human faces – across a wide cortical territory in the ventral occipito-temporal cortex (VOTC), with a frequency-tagging method providing high signal-to-noise ratio (SNR) and the same objective quantification of signal and noise for the two frequency ranges. While LF face-selective activity has higher SNR across the VOTC, leading to a larger number of significant electrode contacts especially in the anterior temporal lobe, LF and HF display highly similar spatial, functional, and timing properties. Specifically, and contrary to a widespread assumption, our results point to nearly identical spatial distribution and local spatial extent of LF and HF activity at equal SNR. These observations go a long way towards clarifying the relationship between the two main iEEG signals and reestablish the informative value of LF iEEG to understand human brain function.
The neural basis of rapid unfamiliar face individuation with human intracerebral recordings
Rapid individuation of conspecifics’ faces is ecologically important in the human species, whether the face belongs to a familiar or unfamiliar individual. Here we tested a large group (N = 69) of epileptic patients implanted with intracerebral electrodes throughout the ventral occipito-temporal cortex (VOTC). We used a frequency-tagging visual stimulation paradigm optimized to objectively measure face individuation with direct neural recordings. This enabled providing an extensive map of the significantly larger neural responses to upright than to inverted unfamiliar faces, i.e. reflecting visual face individuation processes that go beyond physical image differences. These high-level face individuation responses are both distributed and anatomically confined to a strip of cortex running from the inferior occipital gyrus all along the lateral fusiform gyrus, with a large right hemispheric dominance. Importantly, face individuation responses are limited anteriorly to the bilateral anterior fusiform gyrus and surrounding sulci, with a near absence of significant responses in the extensively sampled temporal pole. This large-scale mapping provides original evidence that face individuation is supported by a distributed yet anatomically constrained population of neurons in the human VOTC, and highlights the importance of probing this function with face stimuli devoid of associated semantic, verbal and affective information.
A novel micro-ECoG recording method for recording multisensory neural activity from the parietal to temporal cortices in mice
Characterization of inter-regional interactions in brain is essential for understanding the mechanism relevant to normal brain function and neurological disease. The recently developed flexible micro (μ)-electrocorticography (μECoG) device is one prominent method used to examine large-scale cortical activity across multiple regions. The sheet-shaped μECoG electrodes arrays can be placed on a relatively wide area of cortical surface beneath the skull by inserting the device into the space between skull and brain. Although rats and mice are useful tools for neuroscience, current μECoG recording methods in these animals are limited to the parietal region of cerebral cortex. Recording cortical activity from the temporal region of cortex in mice has proven difficult because of surgical barriers created by the skull and surrounding temporalis muscle anatomy. Here, we developed a sheet-shaped 64-channel μECoG device that allows access to the mouse temporal cortex, and we determined the factor determining the appropriate bending stiffness for the μECoG electrode array. We also established a surgical technique to implant the electrode arrays into the epidural space over a wide area of cerebral cortex covering from the barrel field to olfactory (piriform) cortex, which is the deepest region of the cerebral cortex. Using histology and computed tomography (CT) images, we confirmed that the tip of the μECoG device reached to the most ventral part of cerebral cortex without causing noticeable damage to the brain surface. Moreover, the device simultaneously recorded somatosensory and odor stimulus-evoked neural activity from dorsal and ventral parts of cerebral cortex in awake and anesthetized mice. These data indicate that our μECoG device and surgical techniques enable the recording of large-scale cortical activity from the parietal to temporal cortex in mice, including somatosensory and olfactory cortices. This system will provide more opportunities for the investigation of physiological functions from wider areas of the mouse cerebral cortex than those currently available with existing ECoG techniques.
Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production
Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI); vocal color naming while ignoring distractors (Stroop); and manual object discrimination while ignoring spatial position (Simon task). All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex (ACC) that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus (STG). Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category) relative to incongruent (categorically related) and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the ACC, a region that is likely implementing domain-general attentional control.