Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
365 result(s) for "Coupled Natural and Human Systems"
Sort by:
Operationalizing the social-ecological systems framework to assess sustainability
Significance Meeting human needs while sustaining ecosystems and the benefits they provide is a global challenge. Coastal marine systems present a particularly important case, given that >50% of the world’s population lives within 100 km of the coast and fisheries are the primary source of protein for >1 billion people worldwide. Our integrative analysis here yields an understanding of the sustainability of coupled social-ecological systems that is quite distinct from that provided by either the biophysical or the social sciences alone and that illustrates the feasibility and value of operationalizing the social-ecological systems framework for comparative analyses of coupled systems, particularly in data-poor and developing nation settings. Environmental governance is more effective when the scales of ecological processes are well matched with the human institutions charged with managing human–environment interactions. The social-ecological systems (SESs) framework provides guidance on how to assess the social and ecological dimensions that contribute to sustainable resource use and management, but rarely if ever has been operationalized for multiple localities in a spatially explicit, quantitative manner. Here, we use the case of small-scale fisheries in Baja California Sur, Mexico, to identify distinct SES regions and test key aspects of coupled SESs theory. Regions that exhibit greater potential for social-ecological sustainability in one dimension do not necessarily exhibit it in others, highlighting the importance of integrative, coupled system analyses when implementing spatial planning and other ecosystem-based strategies.
Measuring social-ecological resilience reveals opportunities for transforming environmental governance
Understanding the resilience of social-ecological systems can advance our ability to transform environmental governance and achieve ecologically sustainable and socially just outcomes. However, measuring this multidimensional emergent system property has been elusive. We translated theoretical principles of resilience into ecological and social metrics and used expert knowledge to assess how they have changed through three sequential governance regimes of the Pacific herring fishery in northwestern Canada. We showed a significant reduction in system-wide resilience between previous Indigenous and historical colonial governance regimes, and limited change with the onset of the latest environmental justice era. We also detected recent signs of recovery among several metrics of resilience, thereby signaling that this system exhibits the preconditions for governance transformation. Pinpointing the erosion and recovery of attributes that confer social-ecological resilience can reveal leverage points and highlight strategic pathways to enable deliberate transformation toward a more ecologically sustainable and socially just future.
Primates in peril: the significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation
Primates occur in 90 countries, but four—Brazil, Madagascar, Indonesia, and the Democratic Republic of the Congo (DRC)—harbor 65% of the world’s primate species (439) and 60% of these primates are Threatened, Endangered, or Critically Endangered (IUCN Red List of Threatened Species 2017-3). Considering their importance for global primate conservation, we examine the anthropogenic pressures each country is facing that place their primate populations at risk. Habitat loss and fragmentation are main threats to primates in Brazil, Madagascar, and Indonesia. However, in DRC hunting for the commercial bushmeat trade is the primary threat. Encroachment on primate habitats driven by local and global market demands for food and non-food commodities hunting, illegal trade, the proliferation of invasive species, and human and domestic-animal borne infectious diseases cause habitat loss, population declines, and extirpation. Modeling agricultural expansion in the 21st century for the four countries under a worst-case-scenario, showed a primate range contraction of 78% for Brazil, 72% for Indonesia, 62% for Madagascar, and 32% for DRC. These pressures unfold in the context of expanding human populations with low levels of development. Weak governance across these four countries may limit effective primate conservation planning. We examine landscape and local approaches to effective primate conservation policies and assess the distribution of protected areas and primates in each country. Primates in Brazil and Madagascar have 38% of their range inside protected areas, 17% in Indonesia and 14% in DRC, suggesting that the great majority of primate populations remain vulnerable. We list the key challenges faced by the four countries to avert primate extinctions now and in the future. In the short term, effective law enforcement to stop illegal hunting and illegal forest destruction is absolutely key. Long-term success can only be achieved by focusing local and global public awareness, and actively engaging with international organizations, multinational businesses and consumer nations to reduce unsustainable demands on the environment. Finally, the four primate range countries need to ensure that integrated, sustainable land-use planning for economic development includes the maintenance of biodiversity and intact, functional natural ecosystems.
Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests
Mediterranean biomes are biodiversity hotspots, and vineyards are important components of the Mediterranean landscape. Over the last few decades, the amount of land occupied by vineyards has augmented rapidly, thereby increasing threats to Mediterranean ecosystems. Land use change and agricultural management have important effects on soil biodiversity, because they change the physical and chemical properties of soil. These changes may also have consequences on wine production considering that soil is a key component of terroir . Here, we describe the taxonomic diversity and metabolic functions of bacterial and fungal communities present in forest and vineyard soils in Chile. To accomplish this goal, we collected soil samples from organic vineyards in central Chile and employed a shotgun metagenomic approach to sequence the microbial DNA. Additionally, we studied the surrounding native forest to obtain a baseline of the soil conditions in the area prior to the establishment of the vineyard. Our metagenomic analyses revealed that both habitats shared most of the soil microbial species. The most abundant genera in the two habitats were the bacteria Candidatus Solibacter and Bradyrhizobium and the fungus Gibberella . Our results suggest that the soil microbial communities are similar in these forests and vineyards. Therefore, we hypothesize that native forests surrounding the vineyards may be acting as a microbial reservoir buffering the effects of the land conversion. Regarding the metabolic diversity, we found that genes pertaining to the metabolism of amino acids, fatty acids, and nucleotides as well as genes involved in secondary metabolism were enriched in forest soils. On the other hand, genes related to miscellaneous functions were more abundant in vineyard soils. These results suggest that the metabolic function of microbes found in these habitats differs, though differences are not related to taxonomy. Finally, we propose that the implementation of environmentally friendly practices by the wine industry may help to maintain the microbial diversity and ecosystem functions associated with natural habitats.
Coupled human-natural system impacts of a winter weather whiplash event
In October 2011, the Halloween Nor’easter produced unusually early and heavy snowfall while leaves were still on the trees, causing extensive damage throughout the northeastern United States. This storm is an example of winter weather whiplash, in which an abrupt, back-and-forth swing in winter weather affects coupled human and natural systems. Research on the social-ecological drivers and impacts of winter weather whiplash is scarce because most studies only consider meteorological causes and consequences of extreme events. In this study, we used publicly available data of snowfall accumulation, vegetation phenology, road density, and per capita income to predict storm impacts, which we estimated with textual analysis of Halloween Nor’easter newspaper coverage. We demonstrated that a combination of meteorological, natural, and human system drivers was better able to predict the impact of the storm than meteorological drivers alone. Although we focused on the Halloween Nor’easter, our work highlights the necessity of understanding how multiple drivers and hazards can intersect to create rare and possibly novel conditions that may become more common as the climate warms and becomes more variable.
Terrestrial wildlife as indicators of microplastic pollution in western Thailand
Plastic pollution in terrestrial wildlife represents a new conservation challenge, with research in this area, especially within protected areas (PAs), being scant. This study documents the accumulation of microplastics (MPs) in terrestrial wildlife both inside and outside PAs in western Thailand. Carcasses of road-killed vertebrates in good condition, as well as live tadpoles, were collected to examine their exposure to plastic pollution. The digestive tracts of the vertebrate carcasses and the entire bodies of tadpoles were analyzed for MPs, which were identified if they measured over 50 µm. A total of 136 individuals from 48 vertebrate species were examined. The sample comprised snakes (44.12%), birds (11.03%), lizards (5.15%), tadpoles (32.25%), amphibians (5.88%), and mammals (1.47%). In total, 387 MPs were found in 44 species (91.67%), with an average occurrence of 3.25 ± 3.63 MPs per individual or 0.05 ± 0.08 MPs per gram of body weight. The quantities of MPs significantly varied among the animal groups, both in terms of number per individual ( p < 0.05) and number per gram of body weight ( p < 0.01). Furthermore, a significant difference in MP quantities was observed between specimens collected inside and outside PAs on an individual basis ( p < 0.05), but not on a body weight basis ( p = 0.07). Most MPs were fibers (77%), followed by fragments (22.22%), with only a minimal presence of film (0.52%) and foam (0.26%). Of all the MPs identified, 36.84% were confirmed as plastics or fibers made from natural materials, and 31.58% were plastics, including Polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), Polyvinylidene chloride (PVDC), and polyester (PES). Additionally, fibers made of cotton, and those containing polyurethane (PU), rayon, PES, and combinations of rayon and PU, were identified. The quantities of MPs were significantly influenced by animal body weight, factors associated with human settlement/activity, and land use types. Our findings highlight the prevalence of plastic pollution in terrestrial vertebrates within Thai PAs. Further toxicological studies are required to establish plastic pollution standards. It is proposed that snakes, obtained from road kills, could serve as a non-invasive method for monitoring plastic pollution, thus acting as an indicator of the pollution threat to species within terrestrial ecosystems. There is an urgent need for the standardization of solid waste management at garbage dump sites in remote areas, especially within PAs. Conservation education focusing on MP occurrence, potential sources, and impacts could enhance awareness, thereby influencing changes in behaviors and attitudes toward plastic waste management at the household level.
Ship noise extends to frequencies used for echolocation by endangered killer whales
Combining calibrated hydrophone measurements with vessel location data from the Automatic Identification System, we estimate underwater sound pressure levels for 1,582 unique ships that transited the core critical habitat of the endangered Southern Resident killer whales during 28 months between March, 2011, and October, 2013. Median received spectrum levels of noise from 2,809 isolated transits are elevated relative to median background levels not only at low frequencies (20–30 dB re 1 µPa 2 /Hz from 100 to 1,000 Hz), but also at high frequencies (5–13 dB from 10,000 to 96,000 Hz). Thus, noise received from ships at ranges less than 3 km extends to frequencies used by odontocetes. Broadband received levels (11.5–40,000 Hz) near the shoreline in Haro Strait (WA, USA) for the entire ship population were 110 ± 7 dB re 1 µPa on average. Assuming near-spherical spreading based on a transmission loss experiment we compute mean broadband source levels for the ship population of 173 ± 7 dB re 1 µPa 1 m without accounting for frequency-dependent absorption. Mean ship speed was 7.3 ± 2.0 m/s (14.1 ± 3.9 knots). Most ship classes show a linear relationship between source level and speed with a slope near +2 dB per m/s (+1 dB/knot). Spectrum, 1/12-octave, and 1/3-octave source levels for the whole population have median values that are comparable to previous measurements and models at most frequencies, but for select studies may be relatively low below 200 Hz and high above 20,000 Hz. Median source spectrum levels peak near 50 Hz for all 12 ship classes, have a maximum of 159 dB re 1 µPa 2 /Hz @ 1 m for container ships, and vary between classes. Below 200 Hz, the class-specific median spectrum levels bifurcate with large commercial ships grouping as higher power noise sources. Within all ship classes spectrum levels vary more at low frequencies than at high frequencies, and the degree of variability is almost halved for classes that have smaller speed standard deviations. This is the first study to present source spectra for populations of different ship classes operating in coastal habitats, including at higher frequencies used by killer whales for both communication and echolocation.
Embedding the value of coastal ecosystem services into climate change adaptation planning
Coastal habitats, such as salt marshes and dune systems, can protect communities from hazards by reducing coastline exposure. However, these critical habitats and their diverse ecosystem services are threatened by coastal development and the impacts from a changing climate. Ever increasing pressure on coastal habitats calls for coastal climate adaptation efforts that mitigate or adapt to these pressures in ways that maintain the integrity of coastal landscapes. An important challenge for decisionmakers is determining the best mitigation and adaptation strategies that not only protect human lives and property, but also safeguard the ability of coastal habitats to provide a broad suite of benefits. Here, we present a potential pathway for local-scale climate change adaptation planning through the identification and mapping of natural habitats that provide the greatest benefits to coastal communities. The methodology coupled a coastal vulnerability model with a climate adaptation policy assessment in an effort to identify priority locations for nature-based solutions that reduce vulnerability of critical assets using feasible land-use policy methods. Our results demonstrate the critical role of natural habitats in providing the ecosystem service of coastal protection in California. We found that specific dune habitats play a key role in reducing erosion and inundation of the coastline and that several wetland areas help to absorb energy from storms and provide a protective service for the coast of Marin county, California, USA. Climate change and adaptation planning are globally relevant issues in which the scalability and transferability of solutions must be considered. This work outlines an iterative approach for climate adaptation planning at a local-scale, with opportunity to consider the scalability of an iterative science-policy engagement approach to regional, national, and international levels.
The rise in climate change-induced federal fishery disasters in the United States
Commercial, recreational, and indigenous fisheries are critical to coastal economies and communities in the United States. For over three decades, the federal government has formally recognized the impact of fishery disasters via federal declarations. Despite these impacts, national syntheses of the dynamics, impacts, and causes of fishery disasters are lacking. We developed a nationwide Federal Fishery Disaster database using National Oceanic and Atmospheric Administration (NOAA) fishery disaster declarations and fishery revenue data. From 1989-2020, there were 71 federally approved fishery disasters (eleven are pending), which spanned every federal fisheries management region and coastal state in the country. To date, we estimate fishery disasters resulted in$2B (2019 USD) in Congressional allocations, and an additional, conservative estimate of $ 3.2B (2019 USD) in direct revenue loss. Despite this scale of impact, the disaster assistance process is largely ad hoc and lacks sufficient detail to properly assess allocation fairness and benefit. Nonetheless, fishery disasters increased in frequency over time, and the causes of disasters included a broad range of anthropogenic and environmental factors, with a recent shift to disasters now almost exclusively caused by extreme environmental events (e.g., marine heatwaves, hurricanes, and harmful algal blooms). Nationwide, 84.5% of fishery disasters were either partially or entirely attributed to extreme environmental events. As climate change drives higher rates of such extreme events, and as natural disaster assistance requests reach an all-time high, the federal system for fisheries disaster declaration and mitigation must evolve in order to effectively protect both fisheries sustainability and societal benefit.
Application of different building representation techniques in HEC-RAS 2-D for urban flood modeling using the Toce River experimental case
This paper presents the impact of the choice of building representation techniques and hydrodynamic models on urban flood simulations using HEC-RAS 2-D for the Toce River physical model. To this end, eight numerical models based on previous laboratory experiments were prepared to simulate unsteady urban flooding on each side of building units. Two simplified building layouts (aligned and staggered) were examined, where models were prepared for two different building representation techniques: Building Block (BB) and Building Resistance (BR). Water depth variation computations using the BR and BB techniques were compared to the laboratory measurements and previous studies in the literature. A statistical analysis was performed using both the Root Mean Square Error (RMSE) and the Pearson Product-Moment Correlation Coefficient (PPMCC) in order to evaluate the performance of the models. A sensitivity analysis showed that the proper mesh resolution and model parameter values were obtained. As far as the BR technique is concerned, it is well-suited for representing building units in numerical simulations using high Manning coefficients. Furthermore, this study confirms the importance of the BR technique, which should help researchers in using low-resolution Digital Elevation Models (DEMs) along with open-source programs. Moreover, the study aims to produce a deeper comprehension of numerical modeling and urban flooding.