Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,428 result(s) for "Coupling coefficients"
Sort by:
Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers
The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results.
Crosstalk Limitations due to Intercore Coupling on the BER Performance of an Optical Communication System with Homogeneous Multi-core Fiber
The effect of crosstalk due to inter-core coupling on the bit error rate (BER) performance of a fiber optic communication link with a homogeneous multi-core optical fiber (MCF) and a direct detection receiver with optical preamplifier is analytically evaluated and presented in this paper. Coupling coefficients due to inter-core coupling in a 7-core MCF is evaluated numerically with as a function of core-to-core distance (pitch) and relative refractive index contrast. Coupling length is determined against various index contrasts and at different core pitches. Crosstalk power, Signal to Crosstalk plus Noise Ratio (SCNR), BER and power penalty at any output core with light launched into other core of a 7-core MCF are determined analytically. The results show that there is mentionable deterioration in BER performance due to coupling induced crosstalk, and system suffers distinct power penalty at a given BER. For example, power penalty at BER of 10e-9 is found to be 4.0 dB and 4.3 dB for a MCF link of 10 km corresponding to relative refractive index difference of 0.0036 and 0.0030, respectively, for a pitch value of 30 µm and core radius of 4.5 µm.
Analysis of Coil Parameters and Comparison of Circular, Rectangular, and Hexagonal Coils Used in WPT System for Electric Vehicle Charging
In this paper, the major factors that affect the performance of wireless power transfer systems, such as coil inner radius and coil number of turns, are discussed. A comparison of three coil shapes covering the coreless case, the case with ferrite, and the case with ferrite and aluminum is also carried out. Another comparison is proposed by addressing the combination of different coil shapes in the wireless power transfer (WPT)system. The analysis covers the coupling coefficient, the mutual inductance, and the self-inductance. Due to the complexity of calculating these parameters, the finite element analysis (FEA) method is adopted by using the Ansys Maxwell software. An introduction to the typical WPT system for electric vehicle charging is also presented.
The Influences of Environmental Factors on the Microwave Scattering Coefficient from the Sea Surface
The relationship between the microwave scattering coefficient from the sea surface and wind field has been extensively studied. Nevertheless, recent research on air–sea coupling has shown that sea–air temperature difference (SATD) also significantly affects the scattering coefficient. Therefore, to reveal the influence of different environmental parameters, such as salinity, sea surface temperature (SST), and SATD on the scattering coefficient, a theoretical analysis has been carried out firstly. Meanwhile, the coupling coefficient between a scattering coefficient anomaly (SCA) and sea–air temperature difference anomaly (SATDA) over four typical sea regions is compared with that between an SCA and sea surface temperature anomaly (SSTA) by using the nearly 7–year data of the ECMWF, AMSR-E, and QSCAT. The results demonstrate that SCA is more sensitive to SATDA than SSTA. The values of ksatda between the SATDA and SCA exhibit seasonal variation, being higher in summer and lower in winter. Specifically, ksatda can reach a maximum of 0.62 in summer and drops to 0.2 in winter. Furthermore, the effects of the regional monthly mean sea surface temperature (RMMSST), regional monthly mean air temperature (RMMAT), regional monthly mean sea–air temperature difference (RMMSATD), and regional monthly mean wind speed (RMMWS) on ksatda are also discussed in detail. It is found that the RMMSATD is a crucial factor influencing ksatda. And the negative correlation coefficient between the RMMSATD and ksatda is −0.81.
Physical Mechanisms of Magnetic Field Effects on the Dielectric Function of Hybrid Magnetorheological Suspensions
In this paper, we study the electrical properties of new hybrid magnetorheological suspensions (hMRSs) and propose a theoretical model to explain the dependence of the electric capacitance on the iron volumetric fraction, ΦFe, of the dopants and on the external magnetic field. The hMRSs, with dimensions of 30 mm×30 mm×2 mm, were manufactured based on impregnating cotton fabric, during heating, with three solutions of iron microparticles in silicone oil. Flat capacitors based on these hMRSs were then produced. The time variation of the electric capacitance of the capacitors was measured in the presence and absence of a magnetic field, B, in a time interval of 300 s, with Δt=1 s steps. It was shown that for specific values of ΦFe and B, the coupling coefficient between the cotton fibers and the magnetic dipoles had values corresponding to very stable electrical capacitance. Using magnetic dipole approximation, the mechanisms underlying the observed phenomena can be described if the hMRSs are considered continuous media.
Theory and test of underground explosions: Coupling rule between cratering and ground shock
Calculating the parameters of the ground shock induced by an underground explosion is a complex energy coupling problem. It is difficult to establish a unified ground shock coupling law from limited test data. This paper summarizes the research results obtained at home and abroad and systematically analyzes the coupling mechanism of craters formed by an underground explosion and the ground shock. The differences between the concepts of “closed-explosion critical depth” and “equivalent closed-explosion critical depth” are clearly explained. The spreading of the ground shock energy is attributed to the explosive expansion of the air cavity, revealing a linear relationship between the volume of the cavity region (or the volume of the crack region) and the ground shock energy associated with the underground explosion. The proportionality factor is related to the mechanical properties of the medium and is independent of the magnitude of the explosion equivalent. Based on this, a theoretical calculation formula and conversion method for the ground shock coupling coefficient were established. Explosion tests were conducted in clay and Plexiglass under varying burial depths. The test results were consistent with the theoretically calculated results. Our study provides a theoretical basis for the design of explosion-resistant structures in underground engineering.
Improved Design of PCB Coil for Magnetically Coupled Wireless Power Transfer
In recent years, wireless power transfer (WPT) has progressed rapidly in both theory and commercialization. However, existing research into WPT coil design for low-power devices to mitigate the coil offset is limited. A dual-layer printed circuit board (PCB) structure is proposed in this paper to mitigate the coil offset while retaining manufacturing simplicity for practical uses. Specifically, the impacts of key geometric parameters on the coil quality factor and coupling coefficient are analyzed through models and simulations. Equivalent PCB coils were formed for mutual inductance models, and four basic compensation circuits were analyzed. The impacts of changes in coil thickness, line width, turn spacing, and number of turns on the quality factor of PCB coils were analyzed with a fixed outer diameter of the coil. Eleven types of PCB coils were manufactured to verify the simulation results. The offset transmission efficiency can reach 46.6% with an output power of 14.4 W. The PCB coil with improved design could offer remarkable improvements in the WPT system for low-power electronic devices.
Realization of an Optimum Load for Wireless Power Transfer System
Wireless power transfer (WPT) system has been an integral part of personal living since its regained interest, especially the magnetic resonance (MR) scheme. MR-WPT scheme suffers, however, change of the coil separation distance and various alignment errors. This paper reports a realization of optimum load for MR-WPT system, which can change the loading impedance accordingly for different coupling coefficients between the Tx and Rx coils. A simple varactor circuit is adopted to realize the optimum load curve. Usefulness of this is demonstrated through both the steady and transient analysis. The proposed realization relies on an open-circuit scheme, and hence it is suitable for scenarios with low-cost and small-size requirements.
The Role of the Coupling Coefficient in the Dynamic Problem of Thermoelasticity with Localized Inclusions
The dynamic problem of thermoelasticity with a localized inclusion in a medium is considered. It is shown that in the resonant regime an important role is played by the coupling coefficient of the temperature and strain fields. The coupling of the problem and the presence of a discrete spectrum lead to the appearance of an additional term in the expression for temperature, which is localized and does not describe the diffusion process.
Aluminum Nitride-Based Adjustable Effective Electromechanical Coupling Coefficient Film Bulk Acoustic Resonator
The arrival of the 5G era has promoted the need for filters of different bandwidths. Thin-film bulk acoustic resonators have become the mainstream product for applications due to their excellent performance. The Keff2 of the FBAR greatly influences the bandwidth of the filter. In this paper, we designed an AlN-based adjustable Keff2 FBAR by designing parallel capacitors around the active area of the resonator. The parallel capacitance is introduced through the support column structure, which is compatible with conventional FBAR processes. The effects of different support column widths on Keff2 were verified by finite element simulation and experimental fabrication. The measured results show that the designed FBAR with support columns can achieve a Keff2 value that is 25.9% adjustable.