Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Covariance modelling for array‐valued data"
Sort by:
Tensor graphical lasso (TeraLasso)
The paper introduces a multiway tensor generalization of the bigraphical lasso which uses a two-way sparse Kronecker sum multivariate normal model for the precision matrix to model parsimoniously conditional dependence relationships of matrix variate data based on the Cartesian product of graphs. We call this tensor graphical lasso generalization TeraLasso. We demonstrate by using theory and examples that the TeraLasso model can be accurately and scalably estimated from very limited data samples of high dimensional variables with multiway co-ordinates such as space, time and replicates. Statistical consistency and statistical rates of convergence are established for both the bigraphical lasso and TeraLasso estimators of the precision matrix and estimators of its support (non-sparsity) set respectively. We propose a scalable composite gradient descent algorithm and analyse the computational convergence rate, showing that the composite gradient descent algorithm is guaranteed to converge at a geometric rate to the global minimizer of the TeraLasso objective function. Finally, we illustrate TeraLasso by using both simulation and experimental data from a meteorological data set, showing that we can accurately estimate precision matrices and recover meaningful conditional dependence graphs from high dimensional complex data sets.