Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,447,288 result(s) for "Covid-19, vaccines"
Sort by:
Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant
A double-blind randomized trial in South Africa documented poor efficacy of two doses of the ChAdOx1 nCoV-19 vaccine against the B.1.351 variant of SARS-CoV-2 that emerged in South Africa. Infections occurred in 3.2% of placebo recipients and in 2.5% of vaccine recipients. Thirty-nine of the 42 virus isolates were the B.1.351 variant. None of the cases led to hospitalization or death.
BNT162b vaccines protect rhesus macaques from SARS-CoV-2
A safe and effective vaccine against COVID-19 is urgently needed in quantities that are sufficient to immunize large populations. Here we report the preclinical development of two vaccine candidates (BNT162b1 and BNT162b2) that contain nucleoside-modified messenger RNA that encodes immunogens derived from the spike glycoprotein (S) of SARS-CoV-2, formulated in lipid nanoparticles. BNT162b1 encodes a soluble, secreted trimerized receptor-binding domain (known as the RBD–foldon). BNT162b2 encodes the full-length transmembrane S glycoprotein, locked in its prefusion conformation by the substitution of two residues with proline (S(K986P/V987P); hereafter, S(P2) (also known as P2 S)). The flexibly tethered RBDs of the RBD–foldon bind to human ACE2 with high avidity. Approximately 20% of the S(P2) trimers are in the two-RBD ‘down’, one-RBD ‘up’ state. In mice, one intramuscular dose of either candidate vaccine elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong T-helper-1 CD4 + and IFNγ + CD8 + T cell responses. Prime–boost vaccination of rhesus macaques ( Macaca mulatta ) with the BNT162b candidates elicits SARS-CoV-2-neutralizing geometric mean titres that are 8.2–18.2× that of a panel of SARS-CoV-2-convalescent human sera. The vaccine candidates protect macaques against challenge with SARS-CoV-2; in particular, BNT162b2 protects the lower respiratory tract against the presence of viral RNA and shows no evidence of disease enhancement. Both candidates are being evaluated in phase I trials in Germany and the USA 1 – 3 , and BNT162b2 is being evaluated in an ongoing global phase II/III trial (NCT04380701 and NCT04368728). BNT162b1 and BNT162b2 are two candidate mRNA vaccines against COVID-19 that elicit high virus-entry inhibition titres in mice, elicit high virus-neutralizing titres in rhesus macaques and protect macaques from SARS-CoV-2 challenge.
Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19
Ad26.COV2.S vaccine is a replication-incompetent human adenovirus type 26 vector containing the gene sequence that produces SARS-CoV-2 spike protein in a prefusion-stabilized conformation. In a randomized trial involving nearly 40,000 persons, vaccine efficacy was 66% against moderate to severe–critical Covid-19 and 85% against severe–critical Covid-19. Efficacy against the variant first identified in South Africa was 64% against moderate disease and 82% against severe–critical disease.
SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact
Breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in fully vaccinated individuals are receiving intense scrutiny because of their importance in determining how long restrictions to control virus transmission will need to remain in place in highly vaccinated populations as well as in determining the need for additional vaccine doses or changes to the vaccine formulations and/or dosing intervals. Measurement of breakthrough infections is challenging outside of randomized, placebo-controlled, double-blind field trials. However, laboratory and observational studies are necessary to understand the impact of waning immunity, viral variants and other determinants of changing vaccine effectiveness against various levels of coronavirus disease 2019 (COVID-19) severity. Here, we describe the approaches being used to measure vaccine effectiveness and provide a synthesis of the burgeoning literature on the determinants of vaccine effectiveness and breakthrough rates. We argue that, rather than trying to tease apart the contributions of factors such as age, viral variants and time since vaccination, the rates of breakthrough infection are best seen as a consequence of the level of immunity at any moment in an individual, the variant to which that individual is exposed and the severity of disease being considered. We also address key open questions concerning the transition to endemicity, the potential need for altered vaccine formulations to track viral variants, the need to identify immune correlates of protection, and the public health challenges of using various tools to counter breakthrough infections, including boosters in an era of global vaccine shortages.Here, Lipsitch and colleagues assess the impact of breakthrough SARS-CoV-2 infections that occur in individuals who have been vaccinated against COVID-19. The authors explain how the rate of breakthrough infections can be measured, what the causes of these infections are and discuss other key questions that need to be considered in light of these infections.
Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape
Where 2020 saw the development and testing of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at an unprecedented pace, the first half of 2021 has seen vaccine rollout in many countries. In this Progress article, we provide a snapshot of ongoing vaccine efficacy studies, as well as real-world data on vaccine effectiveness and the impact of virus variants of concern. Where they have been deployed in a high proportion of the adult population, the currently approved vaccines have been extremely effective in preventing COVID-19, particularly severe disease. Nonetheless, there are still significant challenges in ensuring equitable vaccine access around the globe and lessons that can be learned for controlling this pandemic and for the next pandemic.This Progress article provides an update on the COVID-19 vaccine effort in the light of ongoing vaccine efficacy studies and real-world data on vaccine effectiveness, including the impact of virus variants of concern and challenges for global deployment.
Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection
The global supply of COVID-19 vaccines remains limited. An understanding of the immune response that is predictive of protection could facilitate rapid licensure of new vaccines. Data from a randomized efficacy trial of the ChAdOx1 nCoV-19 (AZD1222) vaccine in the United Kingdom was analyzed to determine the antibody levels associated with protection against SARS-CoV-2. Binding and neutralizing antibodies at 28 days after the second dose were measured in infected and noninfected vaccine recipients. Higher levels of all immune markers were correlated with a reduced risk of symptomatic infection. A vaccine efficacy of 80% against symptomatic infection with majority Alpha (B.1.1.7) variant of SARS-CoV-2 was achieved with 264 (95% CI: 108, 806) binding antibody units (BAU)/ml: and 506 (95% CI: 135, not computed (beyond data range) (NC)) BAU/ml for anti-spike and anti-RBD antibodies, and 26 (95% CI: NC, NC) international unit (IU)/ml and 247 (95% CI: 101, NC) normalized neutralization titers (NF 50 ) for pseudovirus and live-virus neutralization, respectively. Immune markers were not correlated with asymptomatic infections at the 5% significance level. These data can be used to bridge to new populations using validated assays, and allow extrapolation of efficacy estimates to new COVID-19 vaccines. Defined levels of SARS-CoV-2-specific binding and neutralizing antibodies elicited by the COVID-19 vaccine ChAdOx1 nCoV-19 are identified as correlates of protection against symptomatic infection.
Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine
A vaccine containing an RNA molecule encoding the SARS-CoV-2 spike protein was tested in a trial in which two injections were given 3 weeks apart. After the second injection, Covid-19 developed in 162 patients receiving placebo, with a median follow-up of 2 months, and in 8 patients receiving the vaccine. Side effects were mainly mild-to-moderate injection-site pain and swelling.
Heterologous prime-boost COVID-19 vaccination: initial reactogenicity data
Haematology and biochemistry safety monitoring blood results are also reported from the immunology cohort (100 participants with additional visits), at baseline (before the prime dose), at day 28 (before the boost dose) and 7 days post-boost, graded according to a modified US Food and Drug Administration toxicity scale (appendix). In this interim safety analysis, we found an increase in systemic reactogenicity after the boost dose reported by participants in heterologous vaccine schedules in comparison to homologous vaccine schedules, and this was accompanied by increased paracetamol usage. Of note, these data were obtained in participants aged 50 years and older, and reactogenicity might be higher in younger age groups4,5 for whom a mixed vaccination schedule is being advocated in Germany, France, Sweden, Norway, and Denmark among those who have received a ChAd prime dose, in light of concerns regarding thrombotic thrombocytopenia after the first dose of ChAd.6 Pending availability of a more complete safety dataset and immunogenicity results for heterologous prime-boost schedules (to be reported shortly), these data suggest that the two heterologous vaccine schedules in this trial might have some short-term disadvantages.
Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine
In a phase 3 trial involving more than 15,000 participants, two doses of NVX-CoV2373, a recombinant SARS-CoV-2 nanoparticle vaccine, administered 21 days apart had a vaccine efficacy of 89.7%. Reactogenicity was generally mild and transient, and adverse events were infrequent and of low grade.
Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study
AbstractObjectiveTo estimate the real world effectiveness of the Pfizer-BioNTech BNT162b2 and Oxford-AstraZeneca ChAdOx1-S vaccines against confirmed covid-19 symptoms (including the UK variant of concern B.1.1.7), admissions to hospital, and deaths.DesignTest negative case-control study.SettingCommunity testing for covid-19 in England.Participants156 930 adults aged 70 years and older who reported symptoms of covid-19 between 8 December 2020 and 19 February 2021 and were successfully linked to vaccination data in the National Immunisation Management System.InterventionsVaccination with BNT162b2 or ChAdOx1-S.Main outcome measuresPrimary outcomes were polymerase chain reaction confirmed symptomatic SARS-CoV-2 infections, admissions to hospital for covid-19, and deaths with covid-19.ResultsParticipants aged 80 years and older vaccinated with BNT162b2 before 4 January 2021 had a higher odds of testing positive for covid-19 in the first nine days after vaccination (odds ratio up to 1.48, 95% confidence interval 1.23 to 1.77), indicating that those initially targeted had a higher underlying risk of infection. Vaccine effectiveness was therefore compared with the baseline post-vaccination period. Vaccine effects were noted 10 to 13 days after vaccination, reaching a vaccine effectiveness of 70% (95% confidence interval 59% to 78%), then plateauing. From 14 days after the second dose a vaccination effectiveness of 89% (85% to 93%) was found compared with the increased baseline risk. Participants aged 70 years and older vaccinated from 4 January (when ChAdOx1-S delivery commenced) had a similar underlying risk of covid-19 to unvaccinated individuals. With BNT162b2, vaccine effectiveness reached 61% (51% to 69%) from 28 to 34 days after vaccination, then plateaued. With ChAdOx1-S, effects were seen from 14 to 20 days after vaccination, reaching an effectiveness of 60% (41% to 73%) from 28 to 34 days, increasing to 73% (27% to 90%) from day 35 onwards. On top of the protection against symptomatic disease, a further 43% (33% to 52%) reduced risk of emergency hospital admission and 51% (37% to 62%) reduced risk of death was observed in those who had received one dose of BNT162b2. Participants who had received one dose of ChAdOx1-S had a further 37% (3% to 59%) reduced risk of emergency hospital admission. Follow-up was insufficient to assess the effect of ChAdOx1-S on mortality. Combined with the effect against symptomatic disease, a single dose of either vaccine was about 80% effective at preventing admission to hospital with covid-19 and a single dose of BNT162b2 was 85% effective at preventing death with covid-19.ConclusionVaccination with either one dose of BNT162b2 or ChAdOx1-S was associated with a significant reduction in symptomatic covid-19 in older adults, and with further protection against severe disease. Both vaccines showed similar effects. Protection was maintained for the duration of follow-up (>6 weeks). A second dose of BNT162b2 was associated with further protection against symptomatic disease. A clear effect of the vaccines against the B.1.1.7 variant was found.