Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,407 result(s) for "CpG Islands - genetics"
Sort by:
Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation
Imprinted genes are expressed from only one of the parental chromosomes and are marked epigenetically by DNA methylation and histone modifications 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . The imprinting center 2 (IC2) on mouse distal chromosome 7 is flanked by several paternally repressed genes, with the more distant ones imprinted exclusively in the placenta. We found that most of these genes lack parent-specific DNA methylation, and genetic ablation of methylation does not lead to loss of their imprinting in the trophoblast (placenta). The silent paternal alleles of the genes are marked in the trophoblast by repressive histone modifications (dimethylation at Lys9 of histone H3 and trimethylation at Lys27 of histone H3), which are disrupted when IC2 is deleted, leading to reactivation of the paternal alleles. Thus, repressive histone methylation is recruited by IC2 (potentially through a noncoding antisense RNA) to the paternal chromosome in a region of at least 700 kb and maintains imprinting in this cluster in the placenta, independently of DNA methylation. We propose that an evolutionarily older imprinting mechanism limited to extraembryonic tissues was based on histone modifications, and that this mechanism was subsequently made more stable for use in embryonic lineages by the recruitment of DNA methylation.
GWAS of epigenetic aging rates in blood reveals a critical role for TERT
DNA methylation age is an accurate biomarker of chronological age and predicts lifespan, but its underlying molecular mechanisms are unknown. In this genome-wide association study of 9907 individuals, we find gene variants mapping to five loci associated with intrinsic epigenetic age acceleration (IEAA) and gene variants in three loci associated with extrinsic epigenetic age acceleration (EEAA). Mendelian randomization analysis suggests causal influences of menarche and menopause on IEAA and lipoproteins on IEAA and EEAA. Variants associated with longer leukocyte telomere length (LTL) in the telomerase reverse transcriptase gene ( TERT ) paradoxically confer higher IEAA ( P  < 2.7 × 10 −11 ). Causal modeling indicates TERT -specific and independent effects on LTL and IEAA. Experimental hTERT-expression in primary human fibroblasts engenders a linear increase in DNA methylation age with cell population doubling number. Together, these findings indicate a critical role for hTERT in regulating the epigenetic clock, in addition to its established role of compensating for cell replication-dependent telomere shortening. Epigenetic clocks based on DNA methylation levels are estimators of chronological age. Here, the authors perform a GWAS of epigenetic aging rates in blood and find SNP variants in the TERT locus associated with increased intrinsic epigenetic age are also associated with longer telomeres.
LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation
De novo DNA methylation (DNAme) during mouse oogenesis occurs within transcribed regions enriched for H3K36me3. As many oocyte transcripts originate in long terminal repeats (LTRs), which are heterogeneous even between closely related mammals, we examined whether species-specific LTR-initiated transcription units (LITs) shape the oocyte methylome. Here we identify thousands of syntenic regions in mouse, rat, and human that show divergent DNAme associated with private LITs, many of which initiate in lineage-specific LTR retrotransposons. Furthermore, CpG island (CGI) promoters methylated in mouse and/or rat, but not human oocytes, are embedded within rodent-specific LITs and vice versa. Notably, at a subset of such CGI promoters, DNAme persists on the maternal genome in fertilized and parthenogenetic mouse blastocysts or in human placenta, indicative of species-specific epigenetic inheritance. Polymorphic LITs are also responsible for disparate DNAme at promoter CGIs in distantly related mouse strains, revealing that LITs also promote intra-species divergence in CGI DNAme. De novo DNA methylation during mouse oogenesis occurs within transcribed regions. Here the authors investigate the role of species-specific long terminal repeats (LTRs)-initiated transcription units in regulating the oocyte methylome, identifying syntenic regions in mouse, rat and human with divergent DNA methylation associated with private LITs.
H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells
Background Transcription regulation in pluripotent embryonic stem (ES) cells is a complex process that involves multitude of regulatory layers, one of which is post-translational modification of histones. Acetylation of specific lysine residues of histones plays a key role in regulating gene expression. Results Here we have investigated the genome-wide occurrence of two histone marks, acetylation of histone H3K9 and K14 (H3K9ac and H3K14ac), in mouse embryonic stem (mES) cells. Genome-wide H3K9ac and H3K14ac show very high correlation between each other as well as with other histone marks (such as H3K4me3) suggesting a coordinated regulation of active histone marks. Moreover, the levels of H3K9ac and H3K14ac directly correlate with the CpG content of the promoters attesting the importance of sequences underlying the specifically modified nucleosomes. Our data provide evidence that H3K9ac and H3K14ac are also present over the previously described bivalent promoters, along with H3K4me3 and H3K27me3. Furthermore, like H3K27ac, H3K9ac and H3K14ac can also differentiate active enhancers from inactive ones. Although, H3K9ac and H3K14ac, a hallmark of gene activation exhibit remarkable correlation over active and bivalent promoters as well as distal regulatory elements, a subset of inactive promoters is selectively enriched for H3K14ac. Conclusions Our study suggests that chromatin modifications, such as H3K9ac and H3K14ac, are part of the active promoter state, are present over bivalent promoters and active enhancers and that the extent of H3K9 and H3K14 acetylation could be driven by cis regulatory elements such as CpG content at promoters. Our study also suggests that a subset of inactive promoters is selectively and specifically enriched for H3K14ac. This observation suggests that histone acetyl transferases (HATs) prime inactive genes by H3K14ac for stimuli dependent activation. In conclusion our study demonstrates a wider role for H3K9ac and H3K14ac in gene regulation than originally thought.
Tridimensional infiltration of DNA viruses into the host genome shows preferential contact with active chromatin
Whether non-integrated viral DNAs distribute randomly or target specific positions within the higher-order architecture of mammalian genomes remains largely unknown. Here we use Hi-C and viral DNA capture (CHi-C) in primary human hepatocytes infected by either hepatitis B virus (HBV) or adenovirus type 5 (Ad5) virus to show that they adopt different strategies in their respective positioning at active chromatin. HBV contacts preferentially CpG islands (CGIs) enriched in Cfp1 a factor required for its transcription. These CGIs are often associated with highly expressed genes (HEG) and genes deregulated during infection. Ad5 DNA interacts preferentially with transcription start sites (TSSs) and enhancers of HEG, as well as genes upregulated during infection. These results show that DNA viruses use different strategies to infiltrate genomic 3D networks and target specific regions. This targeting may facilitate the recruitment of transcription factors necessary for their own replication and contribute to the deregulation of cellular gene expression. Whether DNA viruses contact specific regions of host genomes or make random contacts is unclear. Here, the authors use Hi-C and show that HBV cccDNA and Ad5 DNA contact preferentially active chromatin at CpG islands for the former and at transcription start sites and enhancers for the latter.
Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men
Aims/hypothesis Energy-dense diets that are high in fat are associated with a risk of metabolic diseases. The underlying molecular mechanisms could involve epigenetics, as recent data show altered DNA methylation of putative type 2 diabetes candidate genes in response to high-fat diets. We examined the effect of a short-term high-fat overfeeding (HFO) diet on genome-wide DNA methylation patterns in human skeletal muscle. Methods Skeletal muscle biopsies were obtained from 21 healthy young men after ingestion of a short-term HFO diet and a control diet, in a randomised crossover setting. DNA methylation was measured in 27,578 CpG sites/14,475 genes using Illumina's Infinium Bead Array. Candidate gene expression was determined by quantitative real-time PCR. Results HFO introduced widespread DNA methylation changes affecting 6,508 genes (45%), with a maximum methylation change of 13.0 percentage points. The HFO-induced methylation changes were only partly and non-significantly reversed after 6–8 weeks. Alterations in DNA methylation levels primarily affected genes involved in inflammation, the reproductive system and cancer. Few gene expression changes were observed and these had poor correlation to DNA methylation. Conclusions/interpretation The genome-wide DNA methylation changes induced by the short-term HFO diet could have implications for our understanding of transient epigenetic regulation in humans and its contribution to the development of metabolic diseases. The slow reversibility suggests a methylation build-up with HFO, which over time may influence gene expression levels.
Efficient Arsenic Metabolism — The AS3MT Haplotype Is Associated with DNA Methylation and Expression of Multiple Genes Around AS3MT
Arsenic is a very potent toxicant. One major susceptibility factor for arsenic-related toxicity is the efficiency of arsenic metabolism. The efficiency, in turn, is associated with non-coding single nucleotide polymorphisms (SNPs) in the arsenic methyltransferase AS3MT on chromosome 10q24. However, the mechanism of action for these SNPs is not yet clarified. Here, we assessed the influence of genetic variation in AS3MT on DNA methylation and gene expression within 10q24, in people exposed to arsenic in drinking water. DNA was extracted from peripheral blood from women in the Argentinean Andes (N = 103) and from cord blood from new-borns in Bangladesh (N = 127). AS3MT SNPs were analyzed with Sequenom or Taqman assays. Whole genome epigenetic analysis with Infinium HumanMethylation450 BeadChip was performed on bisulphite-treated DNA. Whole genome gene expression analysis was performed with Illumina DirectHyb HumanHT-12 v4.0 on RNA from peripheral blood. Arsenic exposure was assessed by HPLC-ICPMS. In the Argentinean women, the major AS3MT haplotype, associated with more efficient arsenic metabolism, showed increased methylation of AS3MT (p = 10(-6)) and also differential methylation of several other genes within about 800 kilobasepairs: CNNM2 (p<10(-16)), NT5C2 (p<10(-16)), C10orf26 (p = 10(-8)), USMG5 (p = 10(-5)), TRIM8 (p = 10(-4)), and CALHM2 (p = 0.038) (adjusted for multiple comparisons). Similar, but weaker, associations between AS3MT haplotype and DNA methylation in 10q24 were observed in cord blood (Bangladesh). The haplotype-associated altered CpG methylation was correlated with reduced expression of AS3MT and CNNM2 (r(s) = -0.22 to -0.54), and with increased expression of NT5C2 and USMG5 (r(s) = 0.25 to 0.58). Taking other possibly influential variables into account in multivariable linear models did only to a minor extent alter the strength of the associations. In conclusion, the AS3MT haplotype status strongly predicted DNA methylation and gene expression of AS3MT as well as several genes in 10q24. This raises the possibility that several genes in this region are important for arsenic metabolism.
Phenotype Specific Analyses Reveal Distinct Regulatory Mechanism for Chronically Activated p53
The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.
Effects of multisuperovulation on the transcription and genomic methylation of oocytes and offspring
Background Controlled ovarian stimulation is a common skill of assisted reproductive technologies (ARTs). In the clinic, some females would undergo more than one controlled ovarian stimulation cycle. However, few studies have focused on the influence of multi-superovulation on oocytes and offspring. Results Here, we found that multi-superovulation disrupted the transcriptome of oocytes and that the differentially expressed genes (DEGs) were associated mainly with metabolism and fertilization. The disruption of mRNA degradation via poly (A) size and metabolism might be a reason for the reduced oocyte maturation rate induced by repeated superovulation. Multi-superovulation results in hypo-genomic methylation in oocytes. However, there was an increase in the methylation level of CGIs. The DMRs are not randomly distributed in genome elements. Genes with differentially methylated regions (DMRs) in promoters are enriched in metabolic pathways. With increasing of superovulation cycles, the glucose and insulin tolerance of offspring is also disturbed. Conclusions These results suggest that multi-superovulation has adverse effects on oocyte quality and offspring health.
Salivary epigenetic biomarkers as predictors of emerging childhood obesity
Background Epigenetics could facilitate greater understanding of disparities in the emergence of childhood obesity. While blood is a common tissue used in human epigenetic studies, saliva is a promising tissue. Our prior findings in non-obese preschool-aged Hispanic children identified 17 CpG dinucleotides for which differential methylation in saliva at baseline was associated with maternal obesity status. The current study investigated to what extent baseline DNA methylation in salivary samples in these 3–5-year-old Hispanic children predicted the incidence of childhood obesity in a 3-year prospective cohort. Methods We examined a subsample ( n  = 92) of Growing Right Onto Wellness (GROW) trial participants who were randomly selected at baseline, prior to randomization, based on maternal phenotype (obese or non-obese). Baseline saliva samples were collected using the Oragene DNA saliva kit. Objective data were collected on child height and weight at baseline and 36 months later. Methylation arrays were processed using standard protocol. Associations between child obesity at 36 months and baseline salivary methylation at the previously identified 17 CpG dinucleotides were evaluated using multivariable logistic regression models. Results Among the n  = 75 children eligible for analysis, baseline methylation of Cg1307483 ( NRF 1) was significantly associated with emerging childhood obesity at 36-month follow-up (OR = 2.98, p  = 0.04), after adjusting for child age, gender, child baseline BMI-Z, and adult baseline BMI. This translates to a model-estimated 48% chance of child obesity at 36-month follow-up for a child at the 75th percentile of NRF1 baseline methylation versus only a 30% chance of obesity for a similar child at the 25th percentile. Consistent with other studies, a higher baseline child BMI-Z during the preschool period was associated with the emergence of obesity 3 years later, but baseline methylation of NRF1 was associated with later obesity even after adjusting for child baseline BMI-Z. Conclusions Saliva offers a non-invasive means of DNA collection and epigenetic analysis. Our proof of principle study provides sound empirical evidence supporting DNA methylation in salivary tissue as a potential predictor of subsequent childhood obesity for Hispanic children. NFR1 could be a target for further exploration of obesity in this population.