Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,565
result(s) for
"Crops and climate -- Developing countries"
Sort by:
The Global Food Crisis: Governance Challenges and Opportunities
by
Clapp, Jennifer
,
Cohen, Marc J
in
Agricultural policy
,
Agricultural practices
,
Agricultural production
2009
The global food crisis is a stark reminder of the fragility of the global food system. The Global Food Crisis: Governance Challenges and Opportunities captures the debate about how to go forward and examines the implications of the crisis for food security in the world’s poorest countries, both for the global environment and for the global rules and institutions that govern food and agriculture.In this volume, policy-makers and scholars assess the causes and consequences of the most recent food price volatility and examine the associated governance challenges and opportunities, including short-term emergency responses, the ecological dimensions of the crisis, and the longer-term goal of building sustainable global food systems. The recommendations include vastly increasing public investment in small-farm agriculture; reforming global food aid and food research institutions; establishing fairer international agricultural trade rules; promoting sustainable agricultural methods; placing agriculture higher on the post-Kyoto climate change agenda; revamping biofuel policies; and enhancing international agricultural policy-making.Co-published with the Centre for International Governance Innovation
Crisis and conflict in agriculture
2018
This book examines both how agriculture and rural issues can cause crisis and conflict, and what the effects of crisis and conflict, including violence and natural disasters, are on agriculture. Case studies examine a wide range of crises and conflicts, primarily in developing countries, and appropriate responses to mitigate their effects.
Biochar systems for smallholders in developing countries
2014
Biochar is the carbon-rich organic matter that remains after heating biomass under the minimization of oxygen during a process called pyrolysis. There are a number of reasons why biochar systems may be particularly relevant in developing-country contexts. This report offers a review of what is known about opportunities and risks of biochar systems. Its aim is to provide a state-of-the-art overview of current knowledge regarding biochar science. In that sense the report also offers a reconciling view on different scientific opinions about biochar providing an overall account that shows the various perspectives of its science and application. This includes soil and agricultural impacts of biochar, climate change impacts, social impacts, and competing uses of biomass. The report aims to contextualize the current scientific knowledge in order to put it at use to address the development climate change nexus, including social and environmental sustainability. The report is organized as follows: chapter one offers some introductory comments and notes the increasing interest in biochar both from a scientific and practitioner's point of view; chapter two gives further background on biochar, describing its characteristics and outlining the way in which biochar systems function. Chapter three considers the opportunities and risks of biochar systems. Based on the results of the surveys undertaken, chapter four presents a typology of biochar systems emerging in practice, particularly in the developing world. Life-cycle assessments of the net climate change impact and the net economic profitability of three biochar systems with data collected from relatively advanced biochar projects were conducted and are presented in chapter five. Chapter six investigates various aspects of technology adoption, including barriers to implementing promising systems, focusing on economics, carbon market access, and sociocultural barriers. Finally, the status of knowledge regarding biochar systems is interpreted in chapter seven to determine potential implications for future involvement in biochar research, policy, and project formulation.
The global food crisis : governance challenges and opportunities / Jennifer Clapp and Marc J. Cohen, editors
by
Clapp, Jennifer, 1963-
,
Cohen, Marc J., 1952-
in
Agricultural systems
,
Crops and climate
,
Developing countries
2009
The global food crisis is a stark reminder of the fragility of the global food system. Captures the debate about how to go forward and examines the implications of the crisis for food security in the world's poorest countries, both for the global environment and for the global rules and institutions that govern food and agriculture.
Climate impact and adaptation to heat and drought stress of regional and global wheat production
by
Hernández-Ochoa, Ixchel M
,
Pequeno, Diego N L
,
Sonder, Kai
in
Adaptation
,
Agricultural production
,
Cereal crops
2021
Wheat ( Triticum aestivum ) is the most widely grown food crop in the world threatened by future climate change. In this study, we simulated climate change impacts and adaptation strategies for wheat globally using new crop genetic traits (CGT), including increased heat tolerance, early vigor to increase early crop water use, late flowering to reverse an earlier anthesis in warmer conditions, and the combined traits with additional nitrogen (N) fertilizer applications, as an option to maximize genetic gains. These simulations were completed using three wheat crop models and five Global Climate Models (GCM) for RCP 8.5 at mid-century. Crop simulations were compared with country, US state, and US county grain yield and production. Wheat yield and production from high-yielding and low-yielding countries were mostly captured by the model ensemble mean. However, US state and county yields and production were often poorly reproduced, with large variability in the models, which is likely due to poor soil and crop management input data at this scale. Climate change is projected to decrease global wheat production by −1.9% by mid-century. However, the most negative impacts are projected to affect developing countries in tropical regions. The model ensemble mean suggests large negative yield impacts for African and Southern Asian countries where food security is already a problem. Yields are predicted to decline by −15% in African countries and −16% in Southern Asian countries by 2050. Introducing CGT as an adaptation to climate change improved wheat yield in many regions, but due to poor nutrient management, many developing countries only benefited from adaptation from CGT when combined with additional N fertilizer. As growing conditions and the impact from climate change on wheat vary across the globe, region-specific adaptation strategies need to be explored to increase the possible benefits of adaptations to climate change in the future.
Journal Article
Sorghum mitigates climate variability and change on crop yield and quality
2021
Climate change effects immensely disturb the global agricultural systems by reducing crop production. Changes in extreme weather and climate events such as high-temperature episodes and extreme rainfalls events, droughts, flooding adversely affect the production of staple food crops, posing threat to ecosystem resilience. The resulting crop losses lead to food insecurity and poverty and question the sustainable livelihoods of small farmer communities, particularly in developing countries. In view of this, it is essential to focus and adapt climate-resilient food crops which need lower inputs and produce sustainable yields through various biotic and abiotic stress-tolerant traits. Sorghum, “the camel of cereals”, is one such climate-resilient food crop that is less sensitive to climate change vulnerabilities and also an important staple food in many parts of Asia and Africa. It is a rainfed crop and provides many essential nutrients. Understanding sorghum’s sensitivity to climate change provides scope for improvement of the crop both in terms of quantity and quality and alleviates food and feed security in future climate change scenarios. Thus, the current review focused on understanding the sensitivity of sorghum crop to various stress events due to climate change and throws light on different crop improvement strategies available to pave the way for climate-smart agriculture.
Journal Article
Vulnerability of the agricultural sector to climate change: The development of a pan-tropical Climate Risk Vulnerability Assessment to inform sub-national decision making
by
Parker, Louis
,
Bourgoin, Clement
,
Läderach, Peter
in
Adaptation
,
Adaptive systems
,
Agricultural development
2019
As climate change continues to exert increasing pressure upon the livelihoods and agricultural sector of many developing and developed nations, a need exists to understand and prioritise at the sub national scale which areas and communities are most vulnerable. The purpose of this study is to develop a robust, rigorous and replicable methodology that is flexible to data limitations and spatially prioritizes the vulnerability of agriculture and rural livelihoods to climate change. We have applied the methodology in Vietnam, Uganda and Nicaragua, three contrasting developing countries that are particularly threatened by climate change. We conceptualize vulnerability to climate change following the widely adopted combination of sensitivity, exposure and adaptive capacity. We used Ecocrop and Maxent ecological models under a high emission climate scenario to assess the sensitivity of the main food security and cash crops to climate change. Using a participatory approach, we identified exposure to natural hazards and the main indicators of adaptive capacity, which were modelled and analysed using geographic information systems. We finally combined the components of vulnerability using equal-weighting to produce a crop specific vulnerability index and a final accumulative score. We have mapped the hotspots of climate change vulnerability and identified the underlying driving indicators. For example, in Vietnam we found the Mekong delta to be one of the vulnerable regions due to a decline in the climatic suitability of rice and maize, combined with high exposure to flooding, sea level rise and drought. However, the region is marked by a relatively high adaptive capacity due to developed infrastructure and comparatively high levels of education. The approach and information derived from the study informs public climate change policies and actions, as vulnerability assessments are the bases of any National Adaptation Plans (NAP), National Determined Contributions (NDC) and for accessing climate finance.
Journal Article
Addressing uncertainty in adaptation planning for agriculture
by
Challinor, Andrew J.
,
Campbell, Bruce M.
,
Ramirez-Villegas, Julian
in
AGRICULTURAL INNOVATION TO PROTECT THE ENVIRONMENT SPECIAL FEATURE
,
Agriculture
,
Agriculture - economics
2013
We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop–climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty.
Journal Article
Revisiting the versatile buckwheat
2019
Out of several thousand known edible plant species, only four crops-rice, wheat, maize and potato provide the largest proportion of daily nutrition to billions of people. While these crops are the primary supplier of carbohydrates, they lack essential amino acids and minerals for a balanced nutrition. The overdependence on only few crops makes the future cropping systems vulnerable to the predicted climate change. Diversifying food resources through incorporation of orphan or minor crops in modern cropping systems is one potential strategy to improve the nutritional security and mitigate the hostile weather patterns. One such crop is buckwheat, which can contribute to the agricultural sustainability as it grows in a wide range of environments, requires relatively low inputs and possess balanced amino acid and micronutrient profiles. Additionally, gluten-free nature of protein and nutraceutical properties of secondary metabolites make the crop a healthy alternative of wheat-based diet in developed countries. Despite enormous potential, efforts for the genetic improvement of buckwheat are considerably lagged behind the conventional cereal crops. With the draft genome sequences in hand, there is a great scope to speed up the progress of genetic improvement of buckwheat. This article outlines the state of the art in buckwheat research and provides concrete perspectives how modern breeding approaches can be implemented to accelerate the genetic gain. Our suggestions are transferable to many minor and underutilized crops to address the issue of limited genetic gain and low productivity.
Journal Article
Linkages among climate change, crop yields and Mexico–US cross-border migration
by
Oppenheimer, Michael
,
Krueger, Alan B.
,
Schneider, Stephen H.
in
Adult
,
adults
,
Agricultural production
2010
Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately -0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15–65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming.
Journal Article