Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
389
result(s) for
"Cryptococcus - classification"
Sort by:
The Phenotype of the Cryptococcus-Specific CD4+Memory T-Cell Response Is Associated With Disease Severity and Outcome in HIV-Associated Cryptococcal Meningitis
by
Stone, Hunter H.
,
Levitz, Stuart M.
,
Lawn, Stephen D.
in
Adult
,
Antigens, Fungal - immunology
,
Biological and medical sciences
2013
Background. Correlates of immune protection in patients with human immunodeficiency virus (HIV)-associated cryptococcal meningitis are poorly defined. A clearer understanding of these immune responses is essential to inform rational development of immunotherapies. Methods. Cryptococcal-specific peripheral CD4 + T-cell responses were measured in 44 patients with HIV-associated cryptococcal meningitis at baseline and during follow-up. Responses were assessed following ex vivo cryptococcal mannoprotein stimulation, using 13-color flow-cytometry. The relationships between cryptococcal-specific CD4 + T-cell responses, clinical parameters at presentation, and outcome were investigated. Results. Cryptococcal-specific CD4 + T-cell responses were characterized by the production of macrophage inflammatory protein 1α, interferon γ (IFN-γ), and tumor necrosis factor α (TNF-α). Conversely, minimal interleukin 4 and interleukin 17 production was detected. Patients surviving to 2 weeks had significantly different functional CD4 + T-cell responses as compared to those who died. Patients with a response predominantly consisting of IFN-γ or TNF-α production had a 2-week mortality of 0% (0/20), compared with 25% (6/24) in those without this response (P=.025). Such patients also had lower fungal burdens (10 400 vs 390 000 colony-forming units/mL; P < .001), higher cerebrospinal fluid lymphocyte counts (122 vs 8 cells/μL; P < .001), and a trend toward faster rates of clearance of infection. Conclusions. The phenotype of the peripheral CD4 + T-cell response to Cryptococcus was associated with disease severity and outcome in HIV-associated cryptococcal meningitis. IFN-γ/TNF-α—predomiant responses were associated with survival.
Journal Article
Microevolution of serial clinical isolates of Cryptococcus neoformans var. grubii and C. gattii
by
Jones, Alexander
,
Tenor, Jennifer L.
,
Chen, Yuan
in
Acquired immune deficiency syndrome
,
Adaptation
,
Adaptation, Biological
2017
The pathogenic species of Cryptococcus are a major cause of mortality owing to severe infections in immunocompromised as well as immunocompetent individuals. Although antifungal treatment is usually effective, many patients relapse after treatment, and in such cases, comparative analyses of the genomes of incident and relapse isolates may reveal evidence of determinative, microevolutionary changes within the host. Here, we analyzed serial isolates cultured from cerebrospinal fluid specimens of 18 South African patients with recurrent cryptococcal meningitis. The time between collection of the incident isolates and collection of the relapse isolates ranged from 124 days to 290 days, and the analyses revealed that, during this period within the patients, the isolates underwent several genetic and phenotypic changes. Considering the vast genetic diversity of cryptococcal isolates in sub-Saharan Africa, it was not surprising to find that the relapse isolates had acquired different genetic and correlative phenotypic changes. They exhibited various mechanisms for enhancing virulence, such as growth at 39°C, adaptation to stress, and capsule production; a remarkable amplification of ERG11 at the native and unlinked locus may provide stable resistance to fluconazole. Our data provide a deeper understanding of the microevolution of Cryptococcus species under pressure from antifungal chemotherapy and host immune responses. This investigation clearly suggests a promising strategy to identify novel targets for improved diagnosis, therapy, and prognosis. IMPORTANCE Opportunistic infections caused by species of the pathogenic yeast Cryptococcus lead to chronic meningoencephalitis and continue to ravage thousands of patients with HIV/AIDS. Despite receiving antifungal treatment, over 10% of patients develop recurrent disease. In this study, we collected isolates of Cryptococcus from cerebrospinal fluid specimens of 18 patients at the time of their diagnosis and when they relapsed several months later. We then sequenced and compared the genomic DNAs of each pair of initial and relapse isolates. We also tested the isolates for several key properties related to cryptococcal virulence as well as for their susceptibility to the antifungal drug fluconazole. These analyses revealed that the relapsing isolates manifested multiple genetic and chromosomal changes that affected a variety of genes implicated in the pathogenicity of Cryptococcus or resistance to fluconazole. This application of comparative genomics to serial clinical isolates provides a blueprint for identifying the mechanisms whereby pathogenic microbes adapt within patients to prolong disease. Opportunistic infections caused by species of the pathogenic yeast Cryptococcus lead to chronic meningoencephalitis and continue to ravage thousands of patients with HIV/AIDS. Despite receiving antifungal treatment, over 10% of patients develop recurrent disease. In this study, we collected isolates of Cryptococcus from cerebrospinal fluid specimens of 18 patients at the time of their diagnosis and when they relapsed several months later. We then sequenced and compared the genomic DNAs of each pair of initial and relapse isolates. We also tested the isolates for several key properties related to cryptococcal virulence as well as for their susceptibility to the antifungal drug fluconazole. These analyses revealed that the relapsing isolates manifested multiple genetic and chromosomal changes that affected a variety of genes implicated in the pathogenicity of Cryptococcus or resistance to fluconazole. This application of comparative genomics to serial clinical isolates provides a blueprint for identifying the mechanisms whereby pathogenic microbes adapt within patients to prolong disease.
Journal Article
Multilocus sequence typing (MLST) and M13 PCR fingerprinting revealed heterogeneity amongst Cryptococcus species obtained from Italian veterinary isolates
2014
Cryptococcosis represents a fungal disease acquired from the environment with animals serving as host sentinels for human exposure. The aim of this study was to investigate the genetic characteristics of Cryptococcus isolates from veterinary sources (cats, dogs and birds) to understand their epidemiology and the genetic variability of the casual isolates. Mating‐type PCR in connection with MLST analysis using the ISHAM consensus MLST scheme for the C. neoformans/C. gattii species complex was used to genotype 17 C. neoformans isolates. In the absence of an MLST typing scheme Cryptococcus adeliensis, C. albidus, C. aureus, C. carnescens, C. laurentii, C. magnus and C. uniguttulatus strains were typed using M13 PCR fingerprinting. All C. neoformans isolates were MATα mating type, but hybrids possessed αADa and aADα mating and serotypes. Two C. neoformans molecular types VNI, VNIV and VNIII and VNII/VNIV hybrids were identified. Amongst the 66 non‐C. neoformans strains investigated 55 M13 PCR fingerprinting types were identified. The wide variety of MLST types of C. neoformans and the occurrence of αADa and aADα hybrids in our study supports the notion of genetic recombination in the area studied. The heterogeneity of the non‐C. neoformans isolates remains open to further investigations and should be taken into consideration when identifying emergent pathogens.
Journal Article
Cryptococcus depauperatus, a close relative of the human-pathogen C. neoformans, associated with coffee leaf rust (Hemileia vastatrix) in Cameroon
by
Evans, Harry C
,
Salcedo-Sarmiento, Sara
,
Guterres, Débora C
in
Aspergillus
,
Basidiospores
,
Biological control
2021
The genus Cryptococcus is well known for its two species —Cryptococcus neoformans and C. gatii— that are etiological agents of cryptococcosis, an important fungal disease of mammals, including humans, and which is particularly common in immunocompromised patients. Nevertheless, Cryptococcus is a large and widely distributed genus of basidiomycetes occupying a broad range of niches, including mycoparasitism. One such mycoparasitic species is Cryptococcus depauperatus, which was firstly mistakenly described as a pathogen of scale insects under the name Aspergillus depauperatus. The “Aspergillus” conidiophores were later shown to be basidia of a Cryptococcus and the new combination C. depauperatus was proposed. Additionally, instead of an entomopathogen, the fungus was found to be a mycoparasite growing on the entomopathogen Akanthomyces (Lecanicillium) lecanii. Recently, during surveys for mycoparasites of coffee leaf rust (Hemileia vastatrix) in the context of a biocontrol project, white colonies covering rust pustules were observed in Cameroon. Upon close examination, instead of a member of the “white colony forming complex” of Ascomycetes, commonly collected growing on H. vastatrix, such colonies were found to represent a basidiomycete fungus with basidia-bearing chains of basidiospores, typical of the genus Cryptococcus. Morphological and molecular evidence was generated supporting the identification of the fungus on rust pustules as C. depauperatus. This is the first record of C. depauperatus from Africa and of its association with coffee leaf rust.
Journal Article
Molecular characterization of clinical and environmental isolates from the Cryptococcus neoformans/C. Gattii species complexes of Maceió, Alagoas, Brazil
by
de Albuquerque Maranhão, Fernanda Cristina
,
Silva, Denise Maria Wanderlei da
,
de Holanda Fonseca, Douglas Lyra
in
Cerebrospinal fluid
,
Cryptococcosis
,
Cryptococcus
2024
Cryptococcosis is one of the major life-threatening opportunistic/systemic fungal diseases of worldwide occurrence, which can be asymptomatic or establish pneumonia and meningoencephalitis mainly in immunosuppressed patients, caused by the Cryptococcus neoformans and C. gattii species complexes. Acquisition is by inhaling fungal propagules from avian droppings, tree hollows and decaying wood, and the association of the molecular types with geographic origin, virulence and antifungal resistance have epidemiological importance. Since data on cryptococcosis in Alagoas are limited, we sought to determine the molecular types of etiological agents collected from clinical and environmental sources. We evaluated 21 isolates previously collected from cerebrospinal fluid and from environment sources (pigeon droppings and tree hollows) in Maceió-Alagoas (Brazil). Restriction fragment length polymorphism of URA5 gene was performed to characterize among the eight standard molecular types (VNI-VNIV and VGI-VGIV). Among isolates, 66.67% (14) were assigned to C. neoformans VNI – 12 of them (12/14) recovered from liquor and 2 from a tree hollow (2/14). One isolate from pigeon droppings (4.76%) corresponded to C. neoformans VNIV, while five strains from tree hollows and one from pigeon droppings (6, 28.57%) to C. gattii VGII. VNI-type was present in clinical and environmental samples and most C. neoformans infections were observed in HIV-positive patients, while types VNIV and VGII were prevalent in environmental sources in Alagoas. This is the first molecular characterization of Cryptococcus spp. in Alagoas, our study provides additional information on the ecoepidemiology of Cryptococcus spp. in Brazil, contributing to a closer view of the endemic species.
Journal Article
Molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii in China between 2007 and 2013 using multilocus sequence typing and the DiversiLab system
2015
The purpose of this study was to investigate the molecular characteristics of 83 clinical
Cryptococcus neoformans
/
C. gattii
species complex isolated in Beijing, China, between 2007 and 2013. Restriction fragment length polymorphism of the gene
URA5
(
URA5
-RFLP), multilocus sequence typing (MLST), and automated repetitive polymerase chain reaction (rep-PCR; DiversiLab system) were performed to genotype these cryptococcal isolates. There was an excellent correlation amongst the three methods; however, PU157 was assigned as VNII according to
URA5
-RFLP, while it was classified as VNI by the DiversiLab system analysis. PU157 was finally identified as VNB by seven-locus MLST analysis. Moreover, though AD hybrids could not be processed by MLST, ideal results could be obtained by the DiversiLab system. The genotype VNI accounted for 95.2 % (79/83) of isolates. Besides one strain of VNB, VNIII, and VGI each, a strain of VGII was detected in our study, which was isolated from a patient from the temperate region in North China. In addition, the most common MLST sequence type (ST) was ST5, accounting for 91.6 % (76/83), followed by ST31, ST63, ST182, ST295, ST296, and ST332. ST295, ST296, and ST332 were new STs. Except for isolate PU157 (VNB), identical results were obtained quickly and accurately through the DiversiLab system compared to MLST and
URA5
-RFLP. The discovery of VNB and VGII in the temperate climate regions of China suggested that the population structure of
C. neoformans
and
C. gattii
should be explored more extensively. Our results also showed that the DiversiLab system can be used in the genotyping of
C. neoformans
and
C. gattii
.
Journal Article
Population Genetic Analysis Reveals a High Genetic Diversity in the Brazilian Cryptococcus gattii VGII Population and Shifts the Global Origin from the Amazon Rainforest to the Semi-arid Desert in the Northeast of Brazil
by
Martins, Liline
,
Martins, Marilena
,
Ribeiro-Alves, Marcelo
in
Adaptation
,
Biodiversity
,
Biological Evolution
2016
Cryptococcus neoformans and Cryptococcus gattii are responsible globally for almost one million cryptococcosis cases yearly, mostly in immunocompromised patients, such as those living with HIV. Infections due to C. gattii have mainly been described in tropical and subtropical regions, but its adaptation to temperate regions was crucial in the species evolution and highlighted the importance of this pathogenic yeast in the context of disease. Cryptococcus gattii molecular type VGII has come to the forefront in connection with an on-going emergence in the Pacific North West of North America. Taking into account that previous work pointed towards South America as an origin of this species, the present work aimed to assess the genetic diversity within the Brazilian C. gattii VGII population in order to gain new insights into its origin and global dispersal from the South American continent using the ISHAM consensus MLST typing scheme. Our results corroborate the finding that the Brazilian C. gattii VGII population is highly diverse. The diversity is likely due to recombination generated from sexual reproduction, as evidenced by the presence of both mating types in clinical and environmental samples. The data presented herein strongly supports the emergence of highly virulent strains from ancestors in the Northern regions of Brazil, Amazonia and the Northeast. Numerous genotypes represent a link between Brazil and other parts of the world reinforcing South America as the most likely origin of the C. gattii VGII subtypes and their subsequent global spread, including their dispersal into North America, where they caused a major emergence.
Journal Article
Genotype and mating type analysis of Cryptococcus neoformans and Cryptococcus gattii isolates from China that mainly originated from non-HIV-infected patients
2008
Cryptococcosis has been reported to be mostly associated with non-HIV-related patients in China. However, little is known about the molecular characteristics of clinical isolates from the Cryptococcus neoformans species complex in this country. In this study, 115 clinical isolates were included. Molecular type VNI was the most representative (n=103), followed by VGI (n=8), VNIII (n=2), VNIV (n=1), and VGII (n=1). With the exception of a serotype D mating type a isolate, all possessed the MATα locus. Multilocus sequence typing (MLST) revealed that most Cryptococcus gattii isolates from China shared identical MLST profiles with the most common MLST genotype reported in the VGI group, and the only one VGII isolate resembled the Vancouver Island outbreak minor genotype. The C. gattii strains involved in this study were successfully grouped according to their molecular type and mating types by PCR-restriction fragment length polymorphism (RFLP) analysis of the GEF1 gene. Our results suggest that (1) in China, cryptococcosis is mostly caused by C. neoformans var. grubii (molecular type VNI), and mating type α; (2) The most common causative agents of C. gattii infection in China are closely related to a widely distributed MLST genotype; and (3) The PCR-RFLP analysis of the GEF1 gene has the potential to identify the molecular and mating types of C. gattii simultaneously.
Journal Article
Unique hybrids between the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii
by
Bovers, Marjan
,
Diaz, Mara R.
,
Dromer, Françoise
in
Adult
,
Amplified fragment length polymorphism
,
aneuploidy
2006
Cryptococcus neoformans and Cryptococcus gattii are yeasts that cause meningoencephalitis, but that differ in host range and geographical distribution. Cryptococcus neoformans occurs world-wide and mostly infects immunocompromised patients, whereas C. gattii occurs mainly in (sub)tropical regions and infects healthy individuals. Anomalous C. neoformans strains were isolated from patients. These strains were found to be monokaryotic, and diploid or aneuploid. Amplified Fragment Length Polymorphism (AFLP) and sequence analyses indicated that AFLP genotypes 2 (C. neoformans) and 4 (C. gattii) were present. The strains were serologically BD. Mating- and serotype-specific PCR reactions showed that the strains were MATa-serotype D/MATα-serotype B. This study is the first to describe naturally occurring hybrids between C. neoformans and C. gattii.
Journal Article
Genomic and phenotypic insights into the expanding phylogenetic landscape of the Cryptococcus genus
by
Sampaio, José Paulo
,
Wingfield, Michael J.
,
Kachalkin, Aleksey V.
in
Animals
,
Cryptococcus - classification
,
Cryptococcus - genetics
2025
The fungal genus Cryptococcus includes several life-threatening human pathogens as well as diverse saprobic species whose genome architecture, ecology, and evolutionary history remain less well characterized. Understanding how some lineages evolved into major pathogens remains a central challenge and may be advanced by comparisons with their nonpathogenic counterparts. Integrative approaches have become essential for delimiting species and reconstructing evolutionary relationships, particularly in lineages with cryptic diversity or extensive chromosomal rearrangements. Here, we formally characterize six Cryptococcus species representing distinct evolutionary lineages, comprising both newly discovered and previously recognized but unnamed taxa, through a combination of phylogenomic analyses, divergence metrics, chromosomal comparisons, mating assays, and phenotypic profiling. Among pathogenic taxa, we formally name Cryptococcus hyracis sp. nov., corresponding to the previously characterized VGV lineage within the C. gattii complex. In parallel, we describe five saprobic, nonpathogenic species isolated from fruit, soil, and bark beetle galleries, spanning four phylogenetic clades. We identify a strong ecological association with bark beetles for Cryptococcus porticicola sp. nov., the only newly described nonpathogenic species with multiple sequenced strains from diverse sites. In this species, we detect strain-level chromosomal variation and evidence of sexual reproduction, along with population-level signatures of recombination. Across the genus, chromosome-level comparisons reveal extensive structural variation, including species- and strain-specific rearrangements that may restrict gene flow. We also identify multiple instances of chromosome number reduction, often accompanied by genomic signatures consistent with centromere inactivation or loss of centromeric identity. Comparative metabolic profiling with Biolog phenotype microarrays reveals clade-level differentiation and distinct substrate preferences, which may reflect metabolic divergence and habitat-specific diversification. Notably, we confirm that thermotolerance is restricted to clinically relevant taxa. These findings refine the species-level taxonomy of Cryptococcus , broaden its known genomic and ecological diversity, and strengthen the framework for investigating speciation, adaptation, and the emergence of pathogenicity within the genus.
Journal Article