Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
80,004 result(s) for "Crystallography"
Sort by:
Symmetry in crystallography : understanding the international tables
\"This book presents the reader with a fresh and unconventional approach to teaching crystallographic symmetry. Whereas traditional crystallography textbooks make a heavy use of algebra and rapidly become very technical, this book adopts in the first few chapters a 'pictorial' approach based on the symmetry diagrams of the International Tables for Crystallography. Readers are led step-by-step through simple 'frieze' and 'wallpaper' patterns, with many examples from the visual arts. At the end of chapter 3 they should be able to identify and analyse all these simple symmetries and apply to them the nomenclature and symbols of the International Tables. Mathematical formalism is introduced later on in the book, and by that time the reader will have gained a solid intuitive grasp of the subject matter. This book will provide graduate students, advanced undergraduate students and practitioners in physics, chemistry, earth sciences and structural biology with a solid foundation to master the International Tables of Crystallography, and to understand the relevant literature\"-- Provided by publisher.
Crystals
Written to support elementary science curricula, this text encourages readers to get up close and personal with the crystals contained in Earths rocks.
Macromolecular crystallography and biology at the Linac Coherent Light Source
The Linac Coherent Light Source (LCLS) has significantly impacted the field of biology by providing advanced capabilities for probing the structure and dynamics of biological molecules with high precision. The ultrashort coherent X-ray pulses from the LCLS have enabled ultrafast, time-resolved, serial femtosecond crystallography that is inaccessible at conventional synchrotron light sources. Since the facility's founding, scientists have captured detailed insights into biological processes at atomic resolution and fundamental timescales. The ability to observe these processes in real time and under conditions closely resembling their natural state is transforming our approach to studying biochemical mechanisms and developing new medical and energy applications. This work recounts some of the history of the LCLS, advances in biological research enabled by the LCLS, key biological areas that have been impacted and how the LCLS has helped to unravel complex biological phenomena in these fields.
Effect of a high magnetic field on the morphological and crystallographic features of primary Al sub(6)Mn phase formed during solidification process
Morphological and crystallographic effects of a high magnetic field on the primary Al6Mn phase formed during the solidification of hypereutectic Al-3.25wt%Mn were investigated. Without the field, the primary Al6Mn crystals are mainly concentrated in the lower part and reveal a dispersed needle-like shape. In three dimension, the needles are in the form of a quadrangular prism (laterally bound by {110} and preferentially growing along ). When the magnetic field is applied, they tend to be distributed homogenously and show some extra agglomerate- or chain-like forms (preferentially extending along ). Furthermore, they also tend to preferentially orient with parallel to the field direction. The homogenous distribution is caused by the magnetic viscosity resistance force. The \"agglomerates\" or \"chains\" are the result of a \"bifurcation effect\" due to the breakdown at the sharp edges of the quadrangular prisms. The preferential orientation should be attributed to the magnetocrystalline anisotropy of Al6Mn.
Crystals, X-rays, and proteins : comprehensive protein crystallography
A complete account of the theory of the diffraction of x-rays by crystals with particular reference to the processes of determining the structures of protein molecules, this book is aimed primarily at structural biologists and biochemists but will also be valuable to those entering the field with a background in physical sciences or chemistry.
The current status and future prospects of the Synchrotron Radiation Protein Crystallography Core Facility at NSRRC: a focus on the TPS 05A, TPS 07A and TLS 15A1 beamlines
The Synchrotron Radiation Protein Crystallography Core Facility (SPXF) at the National Synchrotron Radiation Research Center has been pivotal in advancing structural biology research in Taiwan. Since the 1990s, Taiwan has invested in the development of synchrotron light sources, including the Taiwan Light Source and the Taiwan Photon Source, which have profoundly enhanced protein structure analysis capability. Through the high‐performance beamlines, SPXF has enabled significant scientific achievements, contributing to disease research and drug development. The facility's move towards automation and its integration of advanced techniques, such as in situ serial synchrotron crystallography, underscore its commitment to meeting the evolving needs of the research community. The SPXF continues to foster innovation and collaboration, providing world‐class resources for both domestic and international users. The SPXF has revolutionized structural biology research through its advanced light sources, enabling crucial breakthroughs in disease research. The facility's integration of automation and cutting‐edge techniques provides world‐class resources for global researchers.