Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,415 result(s) for "Cucumis sativus"
Sort by:
Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light
The blue part of the light spectrum has been associated with leaf characteristics which also develop under high irradiances. In this study blue light dose–response curves were made for the photosynthetic properties and related developmental characteristics of cucumber leaves that were grown at an equal irradiance under seven different combinations of red and blue light provided by light-emitting diodes. Only the leaves developed under red light alone (0% blue) displayed dysfunctional photosynthetic operation, characterized by a suboptimal and heterogeneously distributed dark-adapted Fv/Fm, a stomatal conductance unresponsive to irradiance, and a relatively low light-limited quantum yield for CO2 fixation. Only 7% blue light was sufficient to prevent any overt dysfunctional photosynthesis, which can be considered a qualitatively blue light effect. The photosynthetic capacity (Amax) was twice as high for leaves grown at 7% blue compared with 0% blue, and continued to increase with increasing blue percentage during growth measured up to 50% blue. At 100% blue, Amax was lower but photosynthetic functioning was normal. The increase in Amax with blue percentage (0–50%) was associated with an increase in leaf mass per unit leaf area (LMA), nitrogen (N) content per area, chlorophyll (Chl) content per area, and stomatal conductance. Above 15% blue, the parameters Amax, LMA, Chl content, photosynthetic N use efficiency, and the Chl:N ratio had a comparable relationship as reported for leaf responses to irradiance intensity. It is concluded that blue light during growth is qualitatively required for normal photosynthetic functioning and quantitatively mediates leaf responses resembling those to irradiance intensity.
Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast
Root responses to lack of iron (Fe) have mainly been studied in nutrient solution experiments devoid of silicon (Si). Here we investigated how Si ameliorates Fe deficiency in cucumber (Cucumis sativus) with focus on the storage and utilization of Fe in the root apoplast. A combined approach was performed including analyses of apoplastic Fe, reduction-based Fe acquisition and Fe-mobilizing compounds in roots along with the expression of related genes. Si-treated plants accumulated higher concentrations of root apoplastic Fe, which rapidly decreased when Fe was withheld from the nutrient solution. Under Fe-deficient conditions, Si also increased the accumulation of Fe-mobilizing compounds in roots. Si supply stimulated root activity of Fe acquisition at the early stage of Fe deficiency stress through regulation of gene expression levels of proteins involved in Fe acquisition. However, when the period of Fe deprivation was extended, these reactions further decreased as a consequence of Si-induced enhancement of the Fe status of the plants. This work provides new evidence for the beneficial role of Si in plant nutrition and clearly indicates that Si-mediated alleviation of Fe deficiency includes an increase of the apoplastic Fe pool in roots and an enhancement of Fe acquisition.
Improving Regulation of Enzymatic and Non-Enzymatic Antioxidants and Stress-Related Gene Stimulation in Cucumber mosaic cucumovirus-Infected Cucumber Plants Treated with Glycine Betaine, Chitosan and Combination
Cucumber mosaic cucumovirus (CMV) is a deadly plant virus that results in crop-yield losses with serious economic consequences. In recent years, environmentally friendly components have been developed to manage crop diseases as alternatives to chemical pesticides, including the use of natural compounds such as glycine betaine (GB) and chitosan (CHT), either alone or in combination. In the present study, the leaves of the cucumber plants were foliar-sprayed with GB and CHT—either alone or in combination—to evaluate their ability to induce resistance against CMV. The results showed a significant reduction in disease severity and CMV accumulation in plants treated with GB and CHT, either alone or in combination, compared to untreated plants (challenge control). In every treatment, growth indices, leaf chlorophylls content, phytohormones (i.e., indole acetic acid, gibberellic acid, salicylic acid and jasmonic acid), endogenous osmoprotectants (i.e., proline, soluble sugars and glycine betaine), non-enzymatic antioxidants (i.e., ascorbic acid, glutathione and phenols) and enzymatic antioxidants (i.e., superoxide dismutase, peroxidase, polyphenol oxidase, catalase, lipoxygenase, ascorbate peroxidase, glutathione reductase, chitinase and β-1,3 glucanase) of virus-infected plants were significantly increased. On the other hand, malondialdehyde and abscisic acid contents have been significantly reduced. Based on a gene expression study, all treated plants exhibited increased expression levels of some regulatory defense genes such as PR1 and PAL1. In conclusion, the combination of GB and CHT is the most effective treatment in alleviated virus infection. To our knowledge, this is the first report to demonstrate the induction of systemic resistance against CMV by using GB.
Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants
Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of 32P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre-established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size-asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the networkinduced suppression of seedling growth.
A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges
Understanding the evolution of sex determination in plants requires identifying the mechanisms underlying the transition from monoecious plants, where male and female flowers coexist, to unisexual individuals found in dioecious species. We show that in melon and cucumber, the androecy gene controls female flower development and encodes a limiting enzyme of ethylene biosynthesis, ACS11. ACS11 is expressed in phloem cells connected to flowers programmed to become female, and ACS11 loss-of-function mutants lead to male plants (androecy). CmACS11 represses the expression of the male promoting gene CmWIP1 to control the development and the coexistence of male and female flowers in monoecious species. Because monoecy can lead to dioecy, we show how a combination of alleles of CmACS11 and CmWIP1 can create artificial dioecy.
Reactive Oxygen Species Are Involved in Brassinosteroid-Induced Stress Tolerance in Cucumber
Brassinosteroids (BRs) induce plant tolerance to a wide spectrum of stresses. To study how BR induces stress tolerance, we manipulated the BR levels in cucumber (Cucumis sativus) through a chemical genetics approach and found that BR levels were positively correlated with the tolerance to photo-oxidative and cold stresses and resistance to Cucumber mosaic virus. We also showed that BR treatment enhanced NADPH oxidase activity and elevated H₂O₂ levels in apoplast. H₂O₂ levels were elevated as early as 3 h and returned to basal levels 3 d after BR treatment. BR-induced H₂O₂ accumulation was accompanied by increased tolerance to oxidative stress. Inhibition of NADPH oxidase and chemical scavenging of H₂O₂ reduced BR-induced oxidative and cold tolerance and defense gene expression. BR treatment induced expression of both regulatory genes, such as RBOH, MAPK1, and MAPK3, and genes involved in defense and antioxidant responses. These results strongly suggest that elevated H₂O₂ levels resulting from enhanced NADPH oxidase activity are involved in the BR-induced stress tolerance.
Perspectives on morphology, physiology, genetic polymorphism and machine learning in cucumber grafting under zinc toxicity
Background Heavy metal contamination in agricultural soils disrupts plant growth and metabolism. Although zinc (Zn) is a necessary element, concentrations above 50 ppm can be toxic to plants. Grafting has emerged as a potential strategy to mitigate heavy metal stress by enhancing tolerance, reducing translocation to edible plant parts, and maintaining crop productivity. Results In this study, cucumber ( Cucumis sativus L.) was grafted onto Cremna F1, Maximus F1, and TZ148 F1 rootstocks and evaluated under four Zn conditions (Zn-deficient 0 ppm, 10 ppm, 50 ppm, and control with 0.05 ppm Zn) in a hydroponic system. Grafted plants exhibited significant improvements, including a 21.5% increase in shoot length and 27.3% higher fresh root weight compared to non-grafted controls. Chlorophyll content remained stable in grafted plants (1.42 ± 0.03 mg g⁻¹ FW) but declined in non-grafted plants (1.18 ± 0.07 mg g⁻¹ FW) under 50 ppm Zn stress. Fruit set (%) decreased from 0.84 ± 0.04 in control plants to 0.61 ± 0.02 under 50 ppm Zn. ISSR band shifts (average polymorphism 91%) were treated as stress-related genotoxicity proxies rather than fixed genotypic differences. PCA indicated moderate separation among treatments rather than fully distinct clusters in grafted plants. Machine learning (ML) analyses complemented these findings: Random Forest regression achieved a five-fold cross-validated performance of R² = 0.64, with fruit curvature, root dry weight, and plant height identified as the strongest predictors of yield. The Zn Tolerance Index (ZTI) ranked TZ148-Cagla as the most tolerant combination, retaining 25% of the control yield under 50 ppm Zn. Conclusion These results demonstrate that grafting enhances cucumber tolerance to Zn stress by improving morphological, physiological, and biochemical performance while maintaining yield stability. ML analyses strengthened these conclusions by quantitatively ranking trait importance and providing a predictive framework for rootstock selection. Together, these findings highlight grafting as an effective strategy for reducing heavy metal accumulation in edible plant parts and sustaining crop productivity, thereby supporting sustainable practices in Zn-affected systems, including contaminated irrigation scenarios.
Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux
Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 μmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1) on growth (dry mass), leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500), increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200), increasing blue light reduced growth only in tomato (41%). The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions.
Silicon-seed priming promotes seed germination under CA-induced autotoxicity by improving sucrose and respiratory metabolism in cucumber (Cucumis sativus L.)
Seed germination is one of the critical and sensitive stages of early plant growth, and its process is prevented by cinnamic acid (CA). Silicon (Si) plays a critical role in mitigating abiotic stresses and seed germination in plants, but little is known about its role in seed germination and physiology in CA-stressed cucumber. Here, we conducted experiments in the State Key Laboratory of Aridland Crop Science, Gansu Agricultural University from March to June 2021 to investigate the effects of Si-seed priming on growth, antioxidant capacity, sucrose mobilization and respiratory metabolism during germination under CA stress. Our results showed that seed soaking with Si (9 mmol/L) significantly reduced membrane lipid peroxidation and promoted post-germination growth of cucumber seeds under CA (2.0 mmol/L) stress. Si increased key enzyme activities in sucrose metabolism in CA-stressed seeds after germination, accelerating sucrose degradation and fructose synthesis. Si also enhanced the activities of key enzymes in the glycolytic pathway and pentose phosphate pathway in seeds, as well as in the post-germination tricarboxylic acid cycle, promoting glucose decomposition and ATP synthesis. Principal component analysis significantly separated the CK, Si, and CA + Si treatments from the CA treatment in the first principal component after 48 h of treatment. In addition, qRT-PCR analysis showed that Si induced overexpression of genes related to sucrose and respiratory metabolism in seeds treated with CA for 48 h. In conclusion, our findings provide evidence that Si priming may be an effective method to reverse CA inhibition of cucumber seeds, which effectively improve germination under CA stress by attenuating membrane lipid peroxidation and enhancing sucrose mobilization and respiratory metabolism in cucumber.
Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber
Background The mitogen-activated protein kinase (MAPK) cascade consists of three types of reversibly phosphorylated kinases, namely, MAPK, MAPK kinase (MAPKK/MEK), and MAPK kinase kinase (MAPKKK/MEKK), playing important roles in plant growth, development, and defense response. The MAPK cascade genes have been investigated in detail in model plants, including Arabidopsis , rice, and tomato, but poorly characterized in cucumber ( Cucumis sativus L.), a major popular vegetable in Cucurbitaceae crops, which is highly susceptible to environmental stress and pathogen attack. Results A genome-wide analysis revealed the presence of at least 14 MAPKs, 6 MAPKKs, and 59 MAPKKKs in the cucumber genome. Phylogenetic analyses classified all the CsMAPK and CsMAPKK genes into four groups, whereas the CsMAPKKK genes were grouped into the MEKK, RAF, and ZIK subfamilies. The expansion of these three gene families was mainly contributed by segmental duplication events. Furthermore, the ratios of non-synonymous substitution rates (Ka) and synonymous substitution rates (Ks) implied that the duplicated gene pairs had experienced strong purifying selection. Real-time PCR analysis demonstrated that some MAPK, MAPKK and MAPKKK genes are preferentially expressed in specific organs or tissues. Moreover, the expression levels of most of these genes significantly changed under heat, cold, drought, and Pseudoperonospora cubensis treatments. Exposure to abscisic acid and jasmonic acid markedly affected the expression levels of these genes, thereby implying that they may play important roles in the plant hormone network. Conclusion A comprehensive genome-wide analysis of gene structure, chromosomal distribution, and evolutionary relationship of MAPK cascade genes in cucumber are present here. Further expression analysis revealed that these genes were involved in important signaling pathways for biotic and abiotic stress responses in cucumber, as well as the response to plant hormones. Our first systematic description of the MAPK, MAPKK, and MAPKKK families in cucumber will help to elucidate their biological roles in plant.