Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
517 result(s) for "Curiosity (Mars rover)"
Sort by:
Mars 2020 Mission Overview
The Mars 2020 mission will seek the signs of ancient life on Mars and will identify, prepare, document, and cache a set of samples for possible return to Earth by a follow-on mission. Mars 2020 and its Perseverance rover thus link and further two long-held goals in planetary science: a deep search for evidence of life in a habitable extraterrestrial environment, and the return of martian samples to Earth for analysis in terrestrial laboratories. The Mars 2020 spacecraft is based on the design of the highly successful Mars Science Laboratory and its Curiosity rover, but outfitted with a sophisticated suite of new science instruments. Ground-penetrating radar will illuminate geologic structures in the shallow subsurface, while a multi-faceted weather station will document martian environmental conditions. Several instruments can be used individually or in tandem to map the color, texture, chemistry, and mineralogy of rocks and regolith at the meter scale and at the submillimeter scale. The science instruments will be used to interpret the geology of the landing site, to identify habitable paleoenvironments, to seek ancient textural, elemental, mineralogical and organic biosignatures, and to locate and characterize the most promising samples for Earth return. Once selected, ∼35 samples of rock and regolith weighing about 15 grams each will be drilled directly into ultraclean and sterile sample tubes. Perseverance will also collect blank sample tubes to monitor the evolving rover contamination environment. In addition to its scientific instruments, Perseverance hosts technology demonstrations designed to facilitate future Mars exploration. These include a device to generate oxygen gas by electrolytic decomposition of atmospheric carbon dioxide, and a small helicopter to assess performance of a rotorcraft in the thin martian atmosphere. Mars 2020 entry, descent, and landing (EDL) will use the same approach that successfully delivered Curiosity to the martian surface, but with several new features that enable the spacecraft to land at previously inaccessible landing sites. A suite of cameras and a microphone will for the first time capture the sights and sounds of EDL. Mars 2020’s landing site was chosen to maximize scientific return of the mission for astrobiology and sample return. Several billion years ago Jezero crater held a 40 km diameter, few hundred-meter-deep lake, with both an inflow and an outflow channel. A prominent delta, fine-grained lacustrine sediments, and carbonate-bearing rocks offer attractive targets for habitability and for biosignature preservation potential. In addition, a possible volcanic unit in the crater and impact megabreccia in the crater rim, along with fluvially-deposited clasts derived from the large and lithologically diverse headwaters terrain, contribute substantially to the science value of the sample cache for investigations of the history of Mars and the Solar System. Even greater diversity, including very ancient aqueously altered rocks, is accessible in a notional rover traverse that ascends out of Jezero crater and explores the surrounding Nili Planum. Mars 2020 is conceived as the first element of a multi-mission Mars Sample Return campaign. After Mars 2020 has cached the samples, a follow-on mission consisting of a fetch rover and a rocket could retrieve and package them, and then launch the package into orbit. A third mission could capture the orbiting package and return it to Earth. To facilitate the sample handoff, Perseverance could deposit its collection of filled sample tubes in one or more locations, called depots, on the planet’s surface. Alternatively, if Perseverance remains functional, it could carry some or all the samples directly to the retrieval spacecraft. The Mars 2020 mission and its Perseverance rover launched from the Eastern Range at Cape Canaveral Air Force Station, Florida, on July 30, 2020. Landing at Jezero Crater will occur on Feb 18, 2021 at about 12:30 PM Pacific Time.
Background levels of methane in Mars’ atmosphere show strong seasonal variations
The Curiosity rover has been sampling on Mars for the past 5 years (see the Perspective by ten Kate). Eigenbrode et al. used two instruments in the SAM (Sample Analysis at Mars) suite to catch traces of complex organics preserved in 3-billion-year-old sediments. Heating the sediments released an array of organics and volatiles reminiscent of organic-rich sedimentary rock found on Earth. Most methane on Earth is produced by biological sources, but numerous abiotic processes have been proposed to explain martian methane. Webster et al. report atmospheric measurements of methane covering 3 martian years and found that the background level varies with the local seasons. The seasonal variation provides an important clue for determining the origin of martian methane. Science , this issue p. 1096 , p. 1093 ; see also p. 1068 The background level of methane in Mars’ atmosphere varies with season, providing a clue to its origin. Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.
The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation
Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission’s Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 μrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 μrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover’s Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover’s traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover’s sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions.
An interval of high salinity in ancient Gale crater lake on Mars
Precipitated minerals, including salts, are primary tracers of atmospheric conditions and water chemistry in lake basins. Ongoing in situ exploration by the Curiosity rover of Hesperian (around 3.3–3.7 Gyr old) sedimentary rocks within Gale crater on Mars has revealed clay-bearing fluvio-lacustrine deposits with sporadic occurrences of sulfate minerals, primarily as late-stage diagenetic veins and concretions. Here we report bulk enrichments, disseminated in the bedrock, of 30–50 wt% calcium sulfate intermittently over about 150 m of stratigraphy, and of 26–36 wt% hydrated magnesium sulfate within a thinner section of strata. We use geochemical analysis, primarily from the ChemCam laser-induced breakdown spectrometer, combined with results from other rover instruments, to characterize the enrichments and their lithology. The deposits are consistent with early diagenetic, pre-compaction salt precipitation from brines concentrated by evaporation, including magnesium sulfate-rich brines from extreme evaporative concentration. This saline interval represents a substantial hydrological perturbation of the lake basin, which may reflect variations in Mars’ obliquity and orbital parameters. Our findings support stepwise changes in Martian climate during the Hesperian, leading to more arid and sulfate-dominated environments as previously inferred from orbital observations.
Organic Matter Preserved in 3-Billion-Year-Old Mudstones at Gale Crater, Mars
Establishing the presence and state of organic matter, including its possible biosignatures, in martian materials has been an elusive quest, despite limited reports of the existence of organic matter on Mars. We report the in situ detection of organic matter preserved in lacustrine mudstones at the base of the ~3.5-billion-year-old Murray formation at Pahrump Hills, Gale crater, by the Sample Analysis at Mars instrument suite onboard the Curiosity rover. Diverse pyrolysis products, including thiophenic, aromatic, and aliphatic compounds released at high temperatures (500° to 820°C), were directly detected by evolved gas analysis. Thiophenes were also observed by gas chromatography–mass spectrometry. Their presence suggests that sulfurization aided organic matter preservation. At least 50 nanomoles of organic carbon persists, probably as macromolecules containing 5% carbon as organic sulfur molecules.
Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations
NASA’s Mars Science Laboratory mission, with its Curiosity rover, has been exploring Gale crater (5.4° S, 137.8° E) since 2012 with the goal of assessing the potential of Mars to support life. The mission has compiled compelling evidence that the crater basin accumulated sediment transported by marginal rivers into lakes that likely persisted for millions of years approximately 3.6 Ga ago in the early Hesperian. Geochemical and mineralogical assessments indicate that environmental conditions within this timeframe would have been suitable for sustaining life, if it ever were present. Fluids simultaneously circulated in the subsurface and likely existed through the dry phases of lake bed exposure and aeolian deposition, conceivably creating a continuously habitable subsurface environment that persisted to less than 3 Ga in the early Amazonian. A diversity of organic molecules has been preserved, though degraded, with evidence for more complex precursors. Solid samples show highly variable isotopic abundances of sulfur, chlorine, and carbon. In situ studies of modern wind-driven sediment transport and multiple large and active aeolian deposits have led to advances in understanding bedform development and the initiation of saltation. Investigation of the modern atmosphere and environment has improved constraints on the timing and magnitude of atmospheric loss, revealed the presence of methane and the crater’s influence on local meteorology, and provided measurements of high-energy radiation at Mars’ surface in preparation for future crewed missions. Rover systems and science instruments remain capable of addressing all key scientific objectives. Emphases on advance planning, flexibility, operations support work, and team culture have allowed the mission team to maintain a high level of productivity in spite of declining rover power and funding.
The Modern Near-Surface Martian Climate: A Review of In-Situ Meteorological Data from Viking to Curiosity
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to todays Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars present day conditions and its implications for future Mars missions.
A surface gravity traverse on Mars indicates low bedrock density at Gale crater
Gravimetry, the precise measurement of gravitational fields, can be used to probe the internal structure of Earth and other planets. The Curiosity rover on Mars carries accelerometers normally used for navigation and attitude determination. We have recalibrated them to isolate the signature of the changing gravitational acceleration as the rover climbs through Gale crater. The subsurface rock density is inferred from the measured decrease in gravitational field strength with elevation. The density of the sedimentary rocks in Gale crater is 1680 ± 180 kilograms per cubic meter. This value is lower than expected, indicating a high porosity and constraining maximum burial depths of the rocks over their history.
Crystal chemistry of martian minerals from Bradbury Landing through Naukluft Plateau, Gale Crater, Mars
Crystal chemical algorithms were used to estimate the chemical composition of selected mineral phases observed with the CheMin X-ray diffractometer onboard the NASA Curiosity rover in Gale crater, Mars. The sampled materials include two wind-blown soils, Rocknest and Gobabeb, six mudstones in the Yellowknife Bay formation (John Klein and Cumberland) and the Murray formation (Confidence Hills, Mojave2, and Telegraph Peak), as well as five sandstones, Windjana and the samples of the unaltered Stimson formation (Big Sky and Okoruso) and the altered Stimson formation (Greenhorn and Lubango). The major mineral phases observed with the CheMin instrument in the Gale crater include plagioclase, sanidine, P21/c and C2/c clinopyroxene, orthopyroxene, olivine, spinel, and alunite-jarosite group minerals. The plagioclase analyzed with CheMin has an overall estimated average of An40(11) with a range of An30(8) to An63(6). The soil samples, Rocknest and Gobabeb, have an average of An56(8) while the Murray, Yellowknife Bay, unaltered Stimson, and altered Stimson formations have averages of An38(2), An37(5), An45(7), and An35(6), respectively. Alkali feldspar, specifically sanidine, average composition is Or74(17) with fully disordered Al/Si. Sanidine is most abundant in the Wind-jana sample (∼26 wt% of the crystalline material) and is fully disordered with a composition of Or87(5). The P21/c clinopyroxene pigeonite observed in Gale crater has a broad compositional range {[Mg0.95(12)-1.54(17)Fe0.18(17)-1.03(9)Ca0.00-0.28(6)]Σ2Si2O6} with an overall average of Mg1.18(19)Fe0.72(7)Ca0.10(9)Si2O6. The soils have the lowest Mg and highest Fe compositions [Mg0.95(5)Fe1.02(7)Ca0.03(4)Si2O6] of all of the Gale samples. Of the remaining samples, those of the Stimson formation exhibit the highest Mg and lowest Fe [average = Mg1.45(7)Fe0.35(13)Ca0.19(6)Si2O6]. Augite, C2/c clinopyroxene, is detected in just three samples, the soil samples [average = Mg0.92(5)Ca0.72(2)Fe0.36(5)Si2O6] and Windjana (Mg1.03(7)Ca0.75(4)Fe0.21(9)Si2O6). Orthopyroxene was not detected in the soil samples and has an overall average composition of Mg0.79(6)Fe1.20(6)Ca0.01(2)Si2O6 and a range of [Mg0.69(7)-0.86(20)Fe1.14(20)-1.31(7)Ca0.00-0.04(4)]Σ2Si2O6, with Big Sky exhibiting the lowest Mg content [Mg0.69(7)Fe1.31(7)Si2O6] and Okoruso exhibiting the highest [Mg0.86(20)Fe1.14(20)Si2O6]. Appreciable olivine was observed in only three of the Gale crater samples, the soils and Windjana. Assuming no Mn or Ca, the olivine has an average composition of Mg1.19(12)Fe0.81(12)SiO4 with a range of 1.08(3) to 1.45(7) Mg apfu. The soil samples [average = Mg1.11(4)Fe0.89SiO4] are significantly less magnesian than Windjana [Mg1.35(7)Fe0.65(7)SiO4]. We assume magnetite (Fe3O4) is cation-deficient (Fe3-x∎xO4) in Gale crater samples [average = Fe2.83(5)∎0.14O4; range 2.75(5) to 2.90(5) Fe apfu], but we also report other plausible cation substitutions such as Al, Mg, and Cr that would yield equivalent unit-cell parameters. Assuming cation-deficient magnetite, the Murray formation [average = Fe2.77(2)∎0.23O4] is noticeably more cation-deficient than the other Gale samples analyzed by CheMin. Note that despite the presence of Ti-rich magnetite in martian meteorites, the unit-cell parameters of Gale magnetite do not permit significant Ti substitution. Abundant jarosite is found in only one sample, Mojave2; its estimated composition is (K0.51(12)Na0.49)(Fe2.68(7)Al0.32)(SO4)2(OH)6. In addition to providing composition and abundances of the crystalline phases, we calculate the lower limit of the abundance of X-ray amorphous material and the composition thereof for each of the samples analyzed with CheMin. Each of the CheMin samples had a significant proportion of amorphous SiO2, except Windjana that has 3.6 wt% SiO2. Excluding Windjana, the amorphous materials have an SiO2 range of 24.1 to 75.9 wt% and an average of 47.6 wt%. Windjana has the highest FeOT (total Fe content calculated as FeO) at 43.1 wt%, but most of the CheMin samples also contain appreciable Fe, with an average of 16.8 wt%. With the exception of the altered Stimson formation samples, Greenhorn and Lubango, the majority of the observed SO3 is concentrated in the amorphous component (average = 11.6 wt%). Furthermore, we provide average amorphous-component compositions for the soils and the Mount Sharp group formations, as well as the limiting element for each CheMin sample.
InSight Auxiliary Payload Sensor Suite (APSS)
NASA’s InSight mission to Mars will measure seismic signals to determine the planet’s interior structure. These highly sensitive seismometers are susceptible to corruption of their measurements by environmental changes. Magnetic fields, atmosphere pressure changes, and local winds can all induce apparent changes in the seismic records that are not due to propagating ground motions. Thus, InSight carries a set of sensors called the Auxiliary Payload Sensor Suite (APSS) which includes a magnetometer, an atmospheric pressure sensor, and a pair of wind and air temperature sensors. In the case of the magnetometer, knowledge of the amplitude of the fluctuating magnetic field at the InSight lander will allow the separation of seismic signals from potentially interfering magnetic signals of either natural or spacecraft origin. To acquire such data, a triaxial fluxgate magnetometer was installed on the deck of the lander to obtain magnetic records at the same cadence as the seismometer. Similarly, a highly sensitive pressure sensor is carried by InSight to enable the removal of local ground-surface tilts due to advecting pressure perturbations. Finally, the local winds (speed and direction) and air temperature are estimated using a hot-film wind sensor with heritage from REMS on the Curiosity rover. When winds are too high, seismic signals can be ignored or discounted. Herein we describe the APSS sensor suite, the test programs for its components, and the possible additional science investigations it enables.