Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,359 result(s) for "Cuticles"
Sort by:
Infrared and Raman spectroscopic features of plant cuticles: a review
The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics) by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement. Additionally, these spectroscopies have been used in the study of cuticle interaction with exogenous molecules, degradation, distribution of components within the cuticle matrix, changes during growth and development and characterization of fossil plants.
Shelf Life Potential and the Fruit Cuticle: The Unexpected Player
The plant cuticle is an extracellular barrier that protects the aerial, non-lignified parts of plants from the surrounding environment, and furthermore plays important functions in organ growth and development. The role of the cuticle in post-harvest quality of fruits is a topic currently driving a lot of interest since an increasing bulk of research data show its modulating influence on a number of important traits determining shelf life and storage potential, including water transpiration and fruit dehydration, susceptibility to rots, pests and disorders, and even firmness. Moreover, the properties of fruit cuticles keep evolving after harvest, and have also been shown to be highly responsive to the external conditions surrounding the fruit. Indeed, common post-harvest treatments will have an impact on cuticle integrity and performance that needs to be evaluated for a deeper understanding of changes in post-harvest quality. In this review, chemical and biophysical properties of fruit cuticles are summarized. An overview is also provided of post-harvest changes in cuticles and the effects thereupon of some post-harvest procedures, with the purpose of offering a comprehensive summary of currently available information. Identification of natural sources of variability in relevant quality traits would allow breeding for the improvement of post-harvest life of fruit commodities.
Multifunctional Roles of Plant Cuticle During Plant-Pathogen Interactions
In land plants the cuticle is the outermost layer interacting with the environment. This lipophilic layer comprises the polyester cutin embedded in cuticular wax; and it forms a physical barrier to protect plants from desiccation as well as from diverse biotic and abiotic stresses. However, the cuticle is not merely a passive, mechanical shield. The increasing research on plant leaves has addressed the active roles of the plant cuticle in both local and systemic resistance against a variety of plant pathogens. Moreover, the fruit cuticle also serves as an important determinant of fruit defense and quality. It shares features with those of vegetative organs, but also exhibits specific characteristics, the functions of which gain increasing attention in recent years. This review describes multiple roles of plant cuticle during plant-pathogen interactions and its responses to both leaf and fruit pathogens. These include the dynamic changes of plant cuticle during pathogen infection; the crosstalk of cuticle with plant cell wall and diverse hormone signaling pathways for plant disease resistance; and the major biochemical, molecular, and cellular mechanisms that underlie the roles of cuticle during plant-pathogen interactions. Although research developments in the field have greatly advanced our understanding of the roles of plant cuticle in plant defense, there still remain large gaps in our knowledge. Therefore, the challenges thus presented, and future directions of research also are discussed in this review.
Large differences in leaf cuticle conductance and its temperature response among 24 tropical tree species from across a rainfall gradient
• More frequent droughts and rising temperatures pose serious threats to tropical forests. When stomata are closed under dry and hot conditions, plants lose water through leaf cuticles, but little is known about cuticle conductance (g min) of tropical trees, how it varies among species and environments, and how it is affected by temperature. • We determined g min in relation to temperature for 24 tropical tree species across a steep rainfall gradient in Panama, by recording leaf drying curves at different temperatures in the laboratory. • In contrast with our hypotheses, g min did not differ systematically across the rainfall gradient; species differences did not reflect phylogenetic patterns; and in most species g min did not significantly increase between 25 and 50°C. g min was higher in deciduous than in evergreen species, in species with leaf trichomes than in species without, in sun leaves than in shade leaves, and tended to decrease with increasing leaf mass per area across species. There was no relationship between stomatal and cuticle conductance. • Large species differences in g min and its temperature response suggest that more frequent hot droughts may lead to differential survival among tropical tree species, regardless of species’ position on the rainfall gradient.
Wax biosynthesis in response to danger
The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and sealed with organic, solvent-extractable cuticular waxes. Cuticular wax ultrastructure and chemical composition differ with plant species, developmental stage and physiological state. Despite this complexity, cuticular wax consistently serves a critical role in restricting nonstomatal water loss. It also protects the plant against other environmental stresses, including desiccation, UVradiation, microorganisms and insects. Within the broader context of plant responses to abiotic and biotic stresses, our knowledge of the explicit roles of wax crystalline structures and chemical compounds is lacking. In this review, we summarize our current knowledge of wax biosynthesis and regulation in relation to abiotic and biotic stresses and stress responses.
Epidermis: the formation and functions of a fundamental plant tissue
Epidermis differentiation and maintenance are essential for plant survival. Constant cross-talk between epidermal cells and their immediate environment is at the heart of epidermal cell fate, and regulates epidermis-specific transcription factors. These factors in turn direct epidermal differentiation involving a whole array of epidermis-specific pathways including specialized lipid metabolism necessary to build the protective cuticle layer. An intact epidermis is crucial for certain key processes in plant development, shoot growth and plant defence. Here, we discuss the control of epidermal cell fate and the function of the epidermal cell layer in the light of recent advances in the field.
The Formation and Function of Plant Cuticles
The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field.
Cuticle Structure in Relation to Chemical Composition: Re-assessing the Prevailing Model
The surface of most aerial plant organs is covered with a cuticle that provides protection against multiple stress factors including dehydration. Interest on the nature of this external layer dates back to the beginning of the 19th century and since then, several studies facilitated a better understanding of cuticular chemical composition and structure. The prevailing undertanding of the cuticle as a lipidic, hydrophobic layer which is independent from the epidermal cell wall underneath stems from the concept developed by Brongniart and von Mohl during the first half of the 19th century. Such early investigations on plant cuticles attempted to link chemical composition and structure with the existing technologies, and have not been directly challenged for decades. Beginning with a historical overview about the development of cuticular studies, this review is aimed at critically assessing the information available on cuticle chemical composition and structure, considering studies performed with cuticles and isolated cuticular chemical components. The concept of the cuticle as a lipid layer independent from the cell wall is subsequently challenged, based on the existing literature, and on new findings pointing toward the cell wall nature of this layer, also providing examples of different leaf cuticle structures. Finally, the need for a re-assessment of the chemical and structural nature of the plant cuticle is highlighted, considering its cell wall nature and variability among organs, species, developmental stages, and biotic and abiotic factors during plant growth.
Biomechanical properties of the tomato (Solanum lycopersicum) fruit cuticle during development are modulated by changes in the relative amounts of its components
In this study, growth‐dependent changes in the mechanical properties of the tomato (Solanum lycopersicum) cuticle during fruit development were investigated in two cultivars with different patterns of cuticle growth and accumulation. The mechanical properties were determined in uniaxial tensile tests using strips of isolated cuticles. Changes in the functional groups of the cuticle chemical components were analysed by attenuated total reflectance–Fourier transform infrared (ATR‐FTIR). The early stages of fruit growth are characterized by an elastic cuticle, and viscoelastic behaviour only appeared at the beginning of cell enlargement. Changes in the cutin:polysaccharide ratio during development affected the strength required to achieve viscoelastic deformation. The increase in stiffness and decrease in extensibility during ripening, related to flavonoid accumulation, were accompanied by an increase in cutin depolymerization as a result of a reduction in the overall number of ester bonds. Quantitative changes in cuticle components influence the elastic/viscoelastic behaviour of the cuticle. The cutin:polysaccharide ratio modulates the stress required to permanently deform the cuticle and allow cell enlargement. Flavonoids stiffen the elastic phase and reduce permanent viscoelastic deformation. Ripening is accompanied by a chemical cleavage of cutin ester bonds. An infrared (IR) band related to phenolic accumulation can be used to monitor changes in the cutin esterification index.
There’s more than one way to skin a fruit: formation and functions of fruit cuticles
As with all aerial plant organs, fleshy fruits are encased in a hydrophobic cuticle that must fulfil multiple functions, including limiting desiccation and preventing microbial infection, which in the case of fruits maintains palatability and promotes seed dispersal. Fruit cuticles have many features in common with those of vegetative organs, but also have unique characteristics, including the fact that they are often astomatous, thicker than those of most leaves, and can be relatively easily isolated. These attributes provide a valuable experimental system to address questions related to cuticle structure, function, and the relationships between composition, architecture, permeability, and biomechanical properties. Here we provide an overview of insights into cuticle biology that have resulted from studies of those of fleshy fruits, as well as the diversity and dynamic nature of fruit cuticle composition and architecture, the environmental factors that influence those features, and the roles that they play in fruit ontogeny.