Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
386
result(s) for
"Cyclic Nucleotide-Gated Cation Channels - metabolism"
Sort by:
A calmodulin-gated calcium channel links pathogen patterns to plant immunity
2019
Pathogen-associated molecular patterns (PAMPs) activate innate immunity in both animals and plants. Although calcium has long been recognized as an essential signal for PAMP-triggered immunity in plants, the mechanism of PAMP-induced calcium signalling remains unknown
1
,
2
. Here we report that calcium nutrient status is critical for calcium-dependent PAMP-triggered immunity in plants. When calcium supply is sufficient, two genes that encode cyclic nucleotide-gated channel (CNGC) proteins,
CNGC2
and
CNGC4
, are essential for PAMP-induced calcium signalling in
Arabidopsis
3
–
7
. In a reconstitution system, we find that the CNGC2 and CNGC4 proteins together—but neither alone—assemble into a functional calcium channel that is blocked by calmodulin in the resting state. Upon pathogen attack, the channel is phosphorylated and activated by the effector kinase BOTRYTIS-INDUCED KINASE1 (BIK1) of the pattern-recognition receptor complex, and this triggers an increase in the concentration of cytosolic calcium
8
–
10
. The CNGC-mediated calcium entry thus provides a critical link between the pattern-recognition receptor complex and calcium-dependent immunity programs in the PAMP-triggered immunity signalling pathway in plants.
The cyclic nucleotide-gated channel proteins CNGC2 and CNGC4 form a calcium channel in Arabidopsis; this channel is blocked by calmodulin in the resting state but is phosphorylated and activated upon pathogen attack, triggering an increase in cytosolic calcium levels.
Journal Article
The Complex Story of Plant Cyclic Nucleotide-Gated Channels
by
Davies, Julia M.
,
Jarratt-Barnham, Edwin
,
Ning, Youzheng
in
Cyclic Nucleotide-Gated Cation Channels - chemistry
,
Cyclic Nucleotide-Gated Cation Channels - genetics
,
Cyclic Nucleotide-Gated Cation Channels - metabolism
2021
Plant cyclic nucleotide-gated channels (CNGCs) are tetrameric cation channels which may be activated by the cyclic nucleotides (cNMPs) adenosine 3′,5′-cyclic monophosphate (cAMP) and guanosine 3′,5′-cyclic monophosphate (cGMP). The genome of Arabidopsis thaliana encodes 20 CNGC subunits associated with aspects of development, stress response and immunity. Recently, it has been demonstrated that CNGC subunits form heterotetrameric complexes which behave differently from the homotetramers produced by their constituent subunits. These findings have widespread implications for future signalling research and may help explain how specificity can be achieved by CNGCs that are known to act in disparate pathways. Regulation of complex formation may involve cyclic nucleotide-gated channel-like proteins.
Journal Article
Elevated energy requirement of cone photoreceptors
by
Sampath, Alapakkam P.
,
Ingram, Norianne T.
,
Fain, Gordon L.
in
Adenosine triphosphate
,
Adenosine Triphosphate - metabolism
,
Animals
2020
We have used recent measurements of mammalian cone light responses and voltage-gated currents to calculate cone ATP utilization and compare it to that of rods. The largest expenditure of ATP results from ion transport, particularly from removal of Na⁺ entering outer segment light-dependent channels and inner segment hyperpolarization-activated cyclic nucleotide-gated channels, and from ATP-dependent pumping of Ca2+ entering voltage-gated channels at the synaptic terminal. Single cones expend nearly twice as much energy as single rods in darkness, largely because they make more synapses with second-order retinal cells and thus must extrude more Ca2+. In daylight, cone ATP utilization per cell remains high because cones never remain saturated and must continue to export Na⁺ and synaptic Ca2+ even in bright illumination. In mouse and human retina, rods greatly outnumber cones and consume more energy overall even in background light. In primates, however, the high density of cones in the fovea produces a pronounced peak of ATP utilization, which becomes particularly prominent in daylight and may make this part of the retina especially sensitive to changes in energy availability.
Journal Article
Structural mechanisms of assembly, gating, and calmodulin modulation of human olfactory CNG channel
2025
Mammalian cyclic nucleotide-gated (CNG) channels play crucial roles in visual and olfactory signal transduction. In olfactory sensory neurons, the native CNG channel functions as a heterotetramer consisting of CNGA2, CNGA4, and CNGB1b subunits and is activated by cAMP. Calmodulin (CaM) modulates the activity of the olfactory CNG channel, enabling rapid adaptation to odorants. Here we present cryo-EM structures of the native human olfactory CNGA2/A4/B1b channel in both CaM-bound closed and cAMP-bound open states, elucidating the molecular basis of the 2:1:1 subunit stoichiometry in channel assembly and the asymmetrical channel gating upon cAMP activation. Combining structural and functional analyses with AlphaFold prediction, we define two distinct CaM binding sites (CaM1 and CaM2) on the N- and C-terminal regions of CNGB1b, respectively, shedding light on the molecular mechanism of Ca
2+
/CaM-mediated rapid inhibition of the native olfactory CNG channel.
CNG channels are essential for vision and smell. Xue et al. reveal structures of the native human olfactory CNG channel in CaM-bound closed and cAMP-bound open states, elucidating mechanisms of assembly, gating, and calmodulin-mediated inhibition.
Journal Article
Structure of a eukaryotic cyclic-nucleotide-gated channel
2017
Cyclic-nucleotide-gated channels are essential for vision and olfaction. They belong to the voltage-gated ion channel superfamily but their activities are controlled by intracellular cyclic nucleotides instead of transmembrane voltage. Here we report a 3.5-Å-resolution single-particle electron cryo-microscopy structure of a cyclic-nucleotide-gated channel from
Caenorhabditis elegans
in the cyclic guanosine monophosphate (cGMP)-bound open state. The channel has an unusual voltage-sensor-like domain, accounting for its deficient voltage dependence. A carboxy-terminal linker connecting S6 and the cyclic-nucleotide-binding domain interacts directly with both the voltage-sensor-like domain and the pore domain, forming a gating ring that couples conformational changes triggered by cyclic nucleotide binding to the gate. The selectivity filter is lined by the carboxylate side chains of a functionally important glutamate and three rings of backbone carbonyls. This structure provides a new framework for understanding mechanisms of ion permeation, gating and channelopathy of cyclic-nucleotide-gated channels and cyclic nucleotide modulation of related channels.
The first high-resolution (3.5 Å) structure of a full-length cyclic-nucleotide-gated channel, revealing an unconventional, voltage-insensitive voltage-sensor domain and a unique coupling mechanism between cyclic-nucleotide-binding and pore-opening.
View of a cyclic-nucleotide-gated channel
It is known that cyclic-nucleotide-gated (CNG) channels are essential for vision and olfaction, but structural information about their mechanism of action has been sketchy. Now Jian Yang, Xueming Li and colleagues present the first high-resolution (3.5 Å) structure of a full-length CNG channel, revealing an unusual, non-functional voltage-gated domain and a unique coupling mechanism between CNG binding and pore opening.
Journal Article
Nuclear-localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations
2016
Nuclear-associated Ca²⁺ oscillations mediate plant responses to beneficial microbial partners–namely, nitrogen-fixing rhizobial bacteria that colonize roots of legumes and arbuscular mycorrhizal fungi that colonize roots of the majority of plant species. A potassium-permeable channel is known to be required for symbiotic Ca²⁺ oscillations, but the calcium channels themselves have been unknown until now. We show that three cyclic nucleotide–gated channels in Medicago truncatula are required for nuclear Ca²⁺ oscillations and subsequent symbiotic responses. These cyclic nucleotide–gated channels are located at the nuclear envelope and are permeable to Ca²⁺. We demonstrate that the cyclic nucleotide–gated channels form a complex with the postassium-permeable channel, which modulates nuclear Ca²⁺ release. These channels, like their counterparts in animal cells, might regulate multiple nuclear Ca²⁺ responses to developmental and environmental conditions.
Journal Article
HCN channels: Structure, cellular regulation and physiological function
2009
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels belong to the superfamily of voltage-gated pore loop channels. HCN channels are unique among vertebrate voltage-gated ion channels, in that they have a reverse voltage-dependence that leads to activation upon hyperpolarization. In addition, voltage-dependent opening of these channels is directly regulated by the binding of cAMP. HCN channels are encoded by four genes (HCN1-4) and are widely expressed throughout the heart and the central nervous system. The current flowing through HCN channels, designated Ih or If, plays a key role in the control of cardiac and neuronal rhythmicity (“pacemaker current”). In addition, Ih contributes to several other neuronal processes, including determination of resting membrane potential, dendritic integration and synaptic transmission. In this review we give an overview on structure, function and regulation of HCN channels. Particular emphasis will be laid on the complex roles of these channels for neuronal function and cardiac rhythmicity.
Journal Article
Hyperpolarization-activated and cyclic nucleotide-gated channel proteins as emerging new targets in neuropathic pain
by
Li, Xiao-Yan
,
Liu, Xiaoliang
,
Zhao, Xin
in
Analgesics - pharmacology
,
Analgesics - therapeutic use
,
Animals
2019
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are activated during hyperpolarization, and there is an inward flow of current, which is termed as hyperpolarization-activated current, I
. Initially, these channels were identified on the pacemaker cells of the heart. Nowadays, these are identified on different regions of the nervous system, including peripheral nerves, dorsal root ganglia, dorsal horns, and different parts of the brain. There are four different types of HCN channels (HCN1–HCN4); however, HCN1 and HCN2 are more prominent. A large number of studies have shown that peripheral nerve injury increases the amplitude of I
current in the neurons of the spinal cord and the brain. Moreover, there is an increase in the expression of HCN1 and HCN2 protein channels in peripheral axons and the spinal cord and brain regions in experimental models of nerve injury. Studies have also documented the pain-attenuating actions of selective HCN inhibitors, such as ivabradine and ZD7288. Moreover, certain drugs with additional HCN-blocking activities have also shown pain-attenuating actions in different pain models. There have been few studies documenting the relationship of HCN channels with other mediators of pain. Nevertheless, it may be proposed that the HCN channel activity is modulated by endogenous opioids and cyclo-oxygenase-2, whereas the activation of these channels may modulate the actions of substance P and the expression of spinal N-methyl-D-aspartate receptor subunit 2B to modulate pain. The present review describes the role and mechanisms of HCN ion channels in the development of neuropathic pain.
Journal Article
A second S4 movement opens hyperpolarization-activated HCN channels
by
Wu, Xiaoan
,
Larssona, H. Peter
,
Ramentol, Rosamary
in
Animals
,
Biological Clocks - physiology
,
Biological Sciences
2021
Rhythmic activity in pacemaker cells, as in the sino-atrial node in the heart, depends on the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. As in depolarization-activated K⁺ channels, the fourth transmembrane segment S4 functions as the voltage sensor in hyperpolarization-activated HCN channels. But how the inward movement of S4 in HCN channels at hyperpolarized voltages couples to channel opening is not understood. Using voltage clamp fluorometry, we found here that S4 in HCN channels moves in two steps in response to hyperpolarizations and that the second S4 step correlates with gate opening. We found a mutation in sea urchin HCN channels that separate the two S4 steps in voltage dependence. The E356A mutation in S4 shifts the main S4 movement to positive voltages, but channel opening remains at negative voltages. In addition, E356A reveals a second S4 movement at negative voltages that correlates with gate opening. Cysteine accessibility and molecular models suggest that the second S4 movement opens up an intracellular crevice between S4 and S5 that would allow radial movement of the intracellular ends of S5 and S6 to open HCN channels.
Journal Article
Insights into the molecular mechanism for hyperpolarization-dependent activation of HCN channels
2018
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels are both voltage- and ligand-activated membrane proteins that contribute to electrical excitability and pace-making activity in cardiac and neuronal cells. These channels are members of the voltage-gated Kv channel superfamily and cyclic nucleotide-binding domain subfamily of ion channels. HCN channels have a unique feature that distinguishes them from other voltage-gated channels: the HCN channel pore opens in response to hyperpolarizing voltages instead of depolarizing voltages. In the canonical model of electromechanical coupling, based on Kv channels, a change in membrane voltage activates the voltage-sensing domains (VSD) and the activation energy passes to the pore domain (PD) through a covalent linker that connects the VSD to the PD. In this investigation, the covalent linkage between the VSD and PD, the S4-S5 linker, and nearby regions of spHCN channels were mutated to determine the functional role each plays in hyperpolarization-dependent activation. The results show that: (i) the S4-S5 linker is not required for hyperpolarization-dependent activation or ligand-dependent gating; (ii) the S4 C-terminal region (S4C-term) is not necessary for ligand-dependent gating but is required for hyperpolarization-dependent activation and acts like an autoinhibitory domain on the PD; (iii) the S5N-term region is involved in VSD–PD coupling and holding the pore closed; and (iv) spHCN channels have two voltage-dependent processes, a hyperpolarization-dependent activation and a depolarization-dependent recovery from inactivation. These results are inconsistent with the canonical model of VSD–PD coupling in Kv channels and elucidate the mechanism for hyperpolarization-dependent activation of HCN channels.
Journal Article